.. _saving_datasets: =============== Saving Datasets =============== Datasets can be written to local or remote storage using ``.write_csv()``, ``.write_json()``, and ``.write_parquet()``. .. code-block:: python # Write to csv files in /tmp/output. ray.data.range(10000).write_csv("/tmp/output") # -> /tmp/output/data0.csv, /tmp/output/data1.csv, ... # Use repartition to control the number of output files: ray.data.range(10000).repartition(1).write_csv("/tmp/output2") # -> /tmp/output2/data0.csv You can also convert a ``Dataset`` to Ray-compatible distributed DataFrames: .. code-block:: python # Convert a Ray Dataset into a Dask-on-Ray DataFrame. dask_df = ds.to_dask()