import threading from six.moves import queue from ray.rllib.evaluation.metrics import get_learner_stats from ray.rllib.policy.policy import LEARNER_STATS_KEY from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.timer import TimerStat from ray.rllib.utils.window_stat import WindowStat LEARNER_QUEUE_MAX_SIZE = 16 tf1, tf, tfv = try_import_tf() class LearnerThread(threading.Thread): """Background thread that updates the local model from replay data. The learner thread communicates with the main thread through Queues. This is needed since Ray operations can only be run on the main thread. In addition, moving heavyweight gradient ops session runs off the main thread improves overall throughput. """ def __init__(self, local_worker): threading.Thread.__init__(self) self.learner_queue_size = WindowStat("size", 50) self.local_worker = local_worker self.inqueue = queue.Queue(maxsize=LEARNER_QUEUE_MAX_SIZE) self.outqueue = queue.Queue() self.queue_timer = TimerStat() self.grad_timer = TimerStat() self.overall_timer = TimerStat() self.daemon = True self.weights_updated = False self.stopped = False self.stats = {} def run(self): # Switch on eager mode if configured. if self.local_worker.policy_config.get("framework") in ["tf2", "tfe"]: tf1.enable_eager_execution() while not self.stopped: self.step() def step(self): with self.overall_timer: with self.queue_timer: ra, replay = self.inqueue.get() if replay is not None: prio_dict = {} with self.grad_timer: grad_out = self.local_worker.learn_on_batch(replay) for pid, info in grad_out.items(): td_error = info.get( "td_error", info[LEARNER_STATS_KEY].get("td_error")) prio_dict[pid] = (replay.policy_batches[pid].data.get( "batch_indexes"), td_error) self.stats[pid] = get_learner_stats(info) self.grad_timer.push_units_processed(replay.count) self.outqueue.put((ra, prio_dict, replay.count)) self.learner_queue_size.push(self.inqueue.qsize()) self.weights_updated = True self.overall_timer.push_units_processed(replay and replay.count or 0)