from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from ray.rllib.models.tf.tf_modelv2 import TFModelV2 from ray.rllib.models.tf.misc import normc_initializer, get_activation_fn from ray.rllib.utils import try_import_tf tf = try_import_tf() class FullyConnectedNetwork(TFModelV2): """Generic fully connected network implemented in ModelV2 API.""" def __init__(self, obs_space, action_space, num_outputs, model_config, name): super(FullyConnectedNetwork, self).__init__( obs_space, action_space, num_outputs, model_config, name) activation = get_activation_fn(model_config.get("fcnet_activation")) hiddens = model_config.get("fcnet_hiddens") no_final_linear = model_config.get("no_final_linear") vf_share_layers = model_config.get("vf_share_layers") # we are using obs_flat, so take the flattened shape as input inputs = tf.keras.layers.Input( shape=(np.product(obs_space.shape), ), name="observations") last_layer = inputs i = 1 if no_final_linear: # the last layer is adjusted to be of size num_outputs for size in hiddens[:-1]: last_layer = tf.keras.layers.Dense( size, name="fc_{}".format(i), activation=activation, kernel_initializer=normc_initializer(1.0))(last_layer) i += 1 layer_out = tf.keras.layers.Dense( num_outputs, name="fc_out", activation=activation, kernel_initializer=normc_initializer(1.0))(last_layer) else: # the last layer is a linear to size num_outputs for size in hiddens: last_layer = tf.keras.layers.Dense( size, name="fc_{}".format(i), activation=activation, kernel_initializer=normc_initializer(1.0))(last_layer) i += 1 layer_out = tf.keras.layers.Dense( num_outputs, name="fc_out", activation=None, kernel_initializer=normc_initializer(0.01))(last_layer) if not vf_share_layers: # build a parallel set of hidden layers for the value net last_layer = inputs i = 1 for size in hiddens: last_layer = tf.keras.layers.Dense( size, name="fc_value_{}".format(i), activation=activation, kernel_initializer=normc_initializer(1.0))(last_layer) i += 1 value_out = tf.keras.layers.Dense( 1, name="value_out", activation=None, kernel_initializer=normc_initializer(0.01))(last_layer) self.base_model = tf.keras.Model(inputs, [layer_out, value_out]) self.register_variables(self.base_model.variables) def forward(self, input_dict, state, seq_lens): model_out, self._value_out = self.base_model(input_dict["obs_flat"]) return model_out, state def value_function(self): return tf.reshape(self._value_out, [-1])