cluster_name: long-running-distributed-tests min_workers: 3 max_workers: 3 target_utilization_fraction: 0.8 idle_timeout_minutes: 15 docker: image: anyscale/ray-ml:latest-gpu container_name: ray_container pull_before_run: True provider: type: aws region: us-west-2 availability_zone: us-west-2a cache_stopped_nodes: False auth: ssh_user: ubuntu head_node: InstanceType: g3.8xlarge worker_nodes: InstanceType: g3.8xlarge InstanceMarketOptions: MarketType: spot setup_commands: - apt-get install -y libglib2.0-0 libcudnn7=7.6.5.32-1+cuda10.1 - pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/latest/ray-1.2.0.dev0-cp37-cp37m-manylinux2014_x86_64.whl # Command to start ray on the head node. You don't need to change this. head_start_ray_commands: - ray stop - export RAY_BACKEND_LOG_LEVEL=debug - ray start --head --port=6379 --object-manager-port=8076 --autoscaling-config=~/ray_bootstrap_config.yaml # Command to start ray on worker nodes. You don't need to change this. worker_start_ray_commands: - ray stop - export RAY_BACKEND_LOG_LEVEL=debug - ray start --address=$RAY_HEAD_IP:6379 --object-manager-port=8076