"""ResNet model with most of the code taken from https://github.com/tensorflow/models/tree/master/resnet. Related papers: https://arxiv.org/pdf/1603.05027v2.pdf https://arxiv.org/pdf/1512.03385v1.pdf https://arxiv.org/pdf/1605.07146v1.pdf """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple import numpy as np import tensorflow as tf from tensorflow.python.training import moving_averages import ray import ray.experimental.tf_utils HParams = namedtuple( "HParams", "batch_size, num_classes, min_lrn_rate, lrn_rate, " "num_residual_units, use_bottleneck, weight_decay_rate, " "relu_leakiness, optimizer, num_gpus") class ResNet(object): """ResNet model.""" def __init__(self, hps, images, labels, mode): """ResNet constructor. Args: hps: Hyperparameters. images: Batches of images of size [batch_size, image_size, image_size, 3]. labels: Batches of labels of size [batch_size, num_classes]. mode: One of 'train' and 'eval'. """ self.hps = hps self._images = images self.labels = labels self.mode = mode self._extra_train_ops = [] def build_graph(self): """Build a whole graph for the model.""" self.global_step = tf.Variable(0, trainable=False) self._build_model() if self.mode == "train": self._build_train_op() else: # Additional initialization for the test network. self.variables = ray.experimental.tf_utils.TensorFlowVariables( self.cost) self.summaries = tf.summary.merge_all() def _stride_arr(self, stride): """Map a stride scalar to the stride array for tf.nn.conv2d.""" return [1, stride, stride, 1] def _build_model(self): """Build the core model within the graph.""" with tf.variable_scope("init"): x = self._conv("init_conv", self._images, 3, 3, 16, self._stride_arr(1)) strides = [1, 2, 2] activate_before_residual = [True, False, False] if self.hps.use_bottleneck: res_func = self._bottleneck_residual filters = [16, 64, 128, 256] else: res_func = self._residual filters = [16, 16, 32, 64] with tf.variable_scope("unit_1_0"): x = res_func(x, filters[0], filters[1], self._stride_arr( strides[0]), activate_before_residual[0]) for i in range(1, self.hps.num_residual_units): with tf.variable_scope("unit_1_%d" % i): x = res_func(x, filters[1], filters[1], self._stride_arr(1), False) with tf.variable_scope("unit_2_0"): x = res_func(x, filters[1], filters[2], self._stride_arr( strides[1]), activate_before_residual[1]) for i in range(1, self.hps.num_residual_units): with tf.variable_scope("unit_2_%d" % i): x = res_func(x, filters[2], filters[2], self._stride_arr(1), False) with tf.variable_scope("unit_3_0"): x = res_func(x, filters[2], filters[3], self._stride_arr( strides[2]), activate_before_residual[2]) for i in range(1, self.hps.num_residual_units): with tf.variable_scope("unit_3_%d" % i): x = res_func(x, filters[3], filters[3], self._stride_arr(1), False) with tf.variable_scope("unit_last"): x = self._batch_norm("final_bn", x) x = self._relu(x, self.hps.relu_leakiness) x = self._global_avg_pool(x) with tf.variable_scope("logit"): logits = self._fully_connected(x, self.hps.num_classes) self.predictions = tf.nn.softmax(logits) with tf.variable_scope("costs"): xent = tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=self.labels) self.cost = tf.reduce_mean(xent, name="xent") self.cost += self._decay() if self.mode == "eval": tf.summary.scalar("cost", self.cost) def _build_train_op(self): """Build training specific ops for the graph.""" num_gpus = self.hps.num_gpus if self.hps.num_gpus != 0 else 1 # The learning rate schedule is dependent on the number of gpus. boundaries = [int(20000 * i / np.sqrt(num_gpus)) for i in range(2, 5)] values = [0.1, 0.01, 0.001, 0.0001] self.lrn_rate = tf.train.piecewise_constant(self.global_step, boundaries, values) tf.summary.scalar("learning rate", self.lrn_rate) if self.hps.optimizer == "sgd": optimizer = tf.train.GradientDescentOptimizer(self.lrn_rate) elif self.hps.optimizer == "mom": optimizer = tf.train.MomentumOptimizer(self.lrn_rate, 0.9) apply_op = optimizer.minimize(self.cost, global_step=self.global_step) train_ops = [apply_op] + self._extra_train_ops self.train_op = tf.group(*train_ops) self.variables = ray.experimental.tf_utils.TensorFlowVariables( self.train_op) def _batch_norm(self, name, x): """Batch normalization.""" with tf.variable_scope(name): params_shape = [x.get_shape()[-1]] beta = tf.get_variable( "beta", params_shape, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32)) gamma = tf.get_variable( "gamma", params_shape, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32)) if self.mode == "train": mean, variance = tf.nn.moments(x, [0, 1, 2], name="moments") moving_mean = tf.get_variable( "moving_mean", params_shape, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32), trainable=False) moving_variance = tf.get_variable( "moving_variance", params_shape, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32), trainable=False) self._extra_train_ops.append( moving_averages.assign_moving_average( moving_mean, mean, 0.9)) self._extra_train_ops.append( moving_averages.assign_moving_average( moving_variance, variance, 0.9)) else: mean = tf.get_variable( "moving_mean", params_shape, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32), trainable=False) variance = tf.get_variable( "moving_variance", params_shape, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32), trainable=False) tf.summary.histogram(mean.op.name, mean) tf.summary.histogram(variance.op.name, variance) # elipson used to be 1e-5. Maybe 0.001 solves NaN problem in deeper # net. y = tf.nn.batch_normalization(x, mean, variance, beta, gamma, 0.001) y.set_shape(x.get_shape()) return y def _residual(self, x, in_filter, out_filter, stride, activate_before_residual=False): """Residual unit with 2 sub layers.""" if activate_before_residual: with tf.variable_scope("shared_activation"): x = self._batch_norm("init_bn", x) x = self._relu(x, self.hps.relu_leakiness) orig_x = x else: with tf.variable_scope("residual_only_activation"): orig_x = x x = self._batch_norm("init_bn", x) x = self._relu(x, self.hps.relu_leakiness) with tf.variable_scope("sub1"): x = self._conv("conv1", x, 3, in_filter, out_filter, stride) with tf.variable_scope("sub2"): x = self._batch_norm("bn2", x) x = self._relu(x, self.hps.relu_leakiness) x = self._conv("conv2", x, 3, out_filter, out_filter, [1, 1, 1, 1]) with tf.variable_scope("sub_add"): if in_filter != out_filter: orig_x = tf.nn.avg_pool(orig_x, stride, stride, "VALID") orig_x = tf.pad( orig_x, [[0, 0], [0, 0], [0, 0], [(out_filter - in_filter) // 2, (out_filter - in_filter) // 2]]) x += orig_x return x def _bottleneck_residual(self, x, in_filter, out_filter, stride, activate_before_residual=False): """Bottleneck residual unit with 3 sub layers.""" if activate_before_residual: with tf.variable_scope("common_bn_relu"): x = self._batch_norm("init_bn", x) x = self._relu(x, self.hps.relu_leakiness) orig_x = x else: with tf.variable_scope("residual_bn_relu"): orig_x = x x = self._batch_norm("init_bn", x) x = self._relu(x, self.hps.relu_leakiness) with tf.variable_scope("sub1"): x = self._conv("conv1", x, 1, in_filter, out_filter / 4, stride) with tf.variable_scope("sub2"): x = self._batch_norm("bn2", x) x = self._relu(x, self.hps.relu_leakiness) x = self._conv("conv2", x, 3, out_filter / 4, out_filter / 4, [1, 1, 1, 1]) with tf.variable_scope("sub3"): x = self._batch_norm("bn3", x) x = self._relu(x, self.hps.relu_leakiness) x = self._conv("conv3", x, 1, out_filter / 4, out_filter, [1, 1, 1, 1]) with tf.variable_scope("sub_add"): if in_filter != out_filter: orig_x = self._conv("project", orig_x, 1, in_filter, out_filter, stride) x += orig_x return x def _decay(self): """L2 weight decay loss.""" costs = [] for var in tf.trainable_variables(): if var.op.name.find(r"DW") > 0: costs.append(tf.nn.l2_loss(var)) return tf.multiply(self.hps.weight_decay_rate, tf.add_n(costs)) def _conv(self, name, x, filter_size, in_filters, out_filters, strides): """Convolution.""" with tf.variable_scope(name): n = filter_size * filter_size * out_filters kernel = tf.get_variable( "DW", [filter_size, filter_size, in_filters, out_filters], tf.float32, initializer=tf.random_normal_initializer( stddev=np.sqrt(2.0 / n))) return tf.nn.conv2d(x, kernel, strides, padding="SAME") def _relu(self, x, leakiness=0.0): """Relu, with optional leaky support.""" return tf.where(tf.less(x, 0.0), leakiness * x, x, name="leaky_relu") def _fully_connected(self, x, out_dim): """FullyConnected layer for final output.""" x = tf.reshape(x, [self.hps.batch_size, -1]) w = tf.get_variable( "DW", [x.get_shape()[1], out_dim], initializer=tf.uniform_unit_scaling_initializer(factor=1.0)) b = tf.get_variable( "biases", [out_dim], initializer=tf.constant_initializer()) return tf.nn.xw_plus_b(x, w, b) def _global_avg_pool(self, x): assert x.get_shape().ndims == 4 return tf.reduce_mean(x, [1, 2])