Adds a Dataset.split_proportionately method that allows the user to split a dataset using proportions. This is a very common use-case for eg. train-test splitting. The implementation is a thin wrapper over Dataset.split_at_indices.
Additionally, this PR adds a ray.ml.train_test_split function intended to provide a familiar API to ML practitioners.
Updates the landing page to match the format and content of Tune's. Added some shorter quickstarts and sharpened up the messaging in our "Why choose Serve?" section, those are the main content changes.
I also moved all of the `doc_code` into one directory and added a bazel target that should run all of the examples added there. Split into a separate PR: https://github.com/ray-project/ray/pull/24736.
Why are these changes needed?
Current documentation code in Message passing using Ray Queue can be enhanced, for better demonstration of the message queue.
It creates 10 tasks but only 2 consumers, and each consumer consumes one task then exit. Therefore, the output is a bit vague:
(consumer pid=1022727) got work 0
(consumer pid=1022595) got work 1
So I make consumer working until the queue is empty. The output shows consumer 1 and 2 working in parallel:
(consumer pid=1030876) consumer 0 got work 0
(consumer pid=1030876) consumer 0 got work 1
(consumer pid=1030876) consumer 0 got work 3
(consumer pid=1030876) consumer 0 got work 5
(consumer pid=1030876) consumer 0 got work 7
(consumer pid=1030876) consumer 0 got work 9
(consumer pid=1030949) consumer 1 got work 2
(consumer pid=1030949) consumer 1 got work 4
(consumer pid=1030949) consumer 1 got work 6
(consumer pid=1030949) consumer 1 got work 8
P.S. Also fix a typo in doc.
This is a notebook showing how to tune an xgboost model and analyze the results.
Also adds a `get_dataframe()` method to `ResultsGrid` to fetch the trial results.
Depends on #24483 for toctree.
This is a small update for the structure of the docs about building Ray from source.
My idea was to isolate steps that are shared and then steps required per platform/system. Also consolidating the instructions to clone with git, install, directory structure, etc.
I'm still figuring out the building steps (installing the dependencies for docs in an M1), but I wanted to start the draft right away.
Adds a from_huggingface method to Datasets, which allows the conversion of a Hugging Face Dataset to a Ray Dataset. As a Hugging Face Dataset is backed by an Arrow table, the conversion is trivial.
As discussed in #24322, rename so the function name matches its signature for PinObjectID(). Also rename the RPC request/reply/method names, to keep them consistent.
This PR introduces a modification to the external markdown logic in doc build to restore the original file content after build is finished. This ensures that the files are not accidentally committed.