Commit graph

21 commits

Author SHA1 Message Date
Eric Liang
abdc3b592e
[rllib] Update multi-gpu impala numbers (#3327) 2018-11-19 20:55:27 -08:00
Eric Liang
65c27c70cf [rllib] Clean up agent resource configurations (#3296)
Closes #3284
2018-11-13 18:00:03 -08:00
Eric Liang
bd0dbde149
[rllib] Rename ServingEnv => ExternalEnv (#3302) 2018-11-12 16:31:27 -08:00
eugenevinitsky
344b4ef0ff [rllib] Fix filter sync for ES and ARS (#2918) 2018-11-06 19:09:34 -08:00
Eric Liang
369cb833fe
[rllib] Implement custom metrics (#3144) 2018-11-03 18:48:32 -07:00
Eric Liang
af0c1174cd
[sgd] Merge sharded param server based SGD implementation (#3033)
This includes most of the TF code used for the OSDI experiment. Perf sanity check on p3.16xl instances: Overall scaling looks ok, with the multi-node results within 5% of OSDI final numbers. This seems reasonable given that hugepages are not enabled here, and the param server shards are placed randomly.

$ RAY_USE_XRAY=1 ./test_sgd.py --gpu --batch-size=64 --num-workers=N \
  --devices-per-worker=M --strategy=<simple|ps> \
  --warmup --object-store-memory=10000000000

Images per second total
gpus total              | simple | ps
========================================
1                       | 218
2 (1 worker)            | 388
4 (1 worker)            | 759
4 (2 workers)           | 176    | 623
8 (1 worker)            | 985
8 (2 workers)           | 349    | 1031
16 (2 nodes, 2 workers) | 600    | 1661
16 (2 nodes, 4 workers) | 468    | 1712   <--- OSDI perf was 1817
2018-10-27 21:25:02 -07:00
Eric Liang
a9e454f6fd
[rllib] Include config dicts in the sphinx docs (#3064) 2018-10-16 15:55:11 -07:00
Eric Liang
814c35b7d7
[rllib] Simplify sample batch size and num envs config, n_step adjustment (#2995)
* simplify vec batch requirements

* Update rllib-training.rst

* Update rllib-training.rst

* Update rllib-training.rst

* Update rllib-training.rst

* Update rllib-training.rst

* Update rllib-models.rst
2018-09-30 18:36:22 -07:00
Eric Liang
3cde5957b3
[rllib] Better document APIs to access policy state (#2932)
* fix

* doc

* example

* up
2018-09-24 19:08:32 -07:00
Eric Liang
995ac24a2c
[rllib] clarify train batch size for PPO (#2793)
It's possible to configure PPO in a way that ends up discarding most of the samples (they are treated as "stragglers"). Add a warning when this happens, and raise an exception if the waste is particularly egregious.
2018-09-05 12:06:13 -07:00
Eric Liang
df4788e501
[rllib/tune] Add test for fractional gpu support in xray mode; add rllib support for fractional gpu (#2768)
* frac gpu

* doc

* Update rllib-training.rst

* yapf

* remove xray
2018-09-03 11:12:23 -07:00
Eric Liang
69d1354016
[rllib] Document ARS & rainbow (#2744)
* wip

* rainbow doc too

* e not used

* fix ppo doc

* clean list

* use same title
2018-08-28 18:13:36 -07:00
Eric Liang
aa014af85b
[rllib] Fix atari reward calculations, add LR annealing, explained var stat for A2C / impala (#2700)
Changes needed to reproduce Atari plots in IMPALA / A2C: https://github.com/ray-project/rl-experiments
2018-08-23 17:49:10 -07:00
Eric Liang
fbe6c59f72
[rllib] Misc fixes, A2C (#2679)
A bunch of minor rllib fixes:

pull in latest baselines atari wrapper changes (and use deepmind wrapper by default)
move reward clipping to policy evaluator
add a2c variant of a3c
reduce vision network fc layer size to 256 units
switch to 84x84 images
doc tweaks
print timesteps in tune status
2018-08-20 15:28:03 -07:00
Richard Liaw
62d0698097
[tune] Tune Facelift (#2472)
This PR introduces the following changes:

 * Ray Tune -> Tune 
 * [breaking] Creation of `schedulers/`, moving PBT, HyperBand into a submodule
 * [breaking] Search Algorithms now must take in experiment configurations via `add_configurations` rather through initialization
 * Support `"run": (function | class | str)` with automatic registering of trainable
 * Documentation Changes
2018-08-19 11:00:55 -07:00
Eric Liang
53f9755594
[rllib] Fix support for mixed discrete and continuous action spaces, add to regression test (#2655)
* fix

* lint

* fix
2018-08-15 10:19:41 -07:00
Eric Liang
9449d07eca
[rllib] Fix crash when setting horizon in multiagent
If a horizon is set, an env terminates without done=True.
2018-08-03 16:37:56 -07:00
Eric Liang
9ea57c2a93
[rllib] Basic IMPALA implementation (using deepmind's reference vtrace.py) (#2504)
Rename AsyncSamplesOptimizer -> AsyncReplayOptimizer
  Add AsyncSamplesOptimizer that implements the IMPALA architecture
  integrate V-trace with a3c policy graph
  audit V-trace integration
  benchmark compare vs A3C and with V-trace on/off
PongNoFrameskip-v4 on IMPALA scaling from 16 to 128 workers, solving Pong in <10 min. For reference, solving this env takes ~40 minutes for Ape-X and several hours for A3C.
2018-08-01 20:53:53 -07:00
Eric Liang
9a479b3a63
[rllib] Document creating an ensemble of envs; also add vector_index attribute to env config (#2513)
This also removes the async resetting code in VectorEnv. While that improves benchmark performance slightly, it substantially complicates env configuration and probably isn't worth it for most envs.

This makes it easy to efficiently support setups like Joint PPO: https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/retro-contest/gotta_learn_fast_report.pdf

For example, for 188 envs, you could do something like num_envs: 10, num_envs_per_worker: 19.
2018-08-01 16:29:27 -07:00
Eric Liang
d9a36c4e39
[rllib] Document auto-concat in a3c (#2533)
* docs

* update hyperparm docs
2018-08-01 15:11:30 -07:00
Eric Liang
8aa56c12e6
[rllib] Document "v2" APIs (#2316)
* re

* wip

* wip

* a3c working

* torch support

* pg works

* lint

* rm v2

* consumer id

* clean up pg

* clean up more

* fix python 2.7

* tf session management

* docs

* dqn wip

* fix compile

* dqn

* apex runs

* up

* impotrs

* ddpg

* quotes

* fix tests

* fix last r

* fix tests

* lint

* pass checkpoint restore

* kwar

* nits

* policy graph

* fix yapf

* com

* class

* pyt

* vectorization

* update

* test cpe

* unit test

* fix ddpg2

* changes

* wip

* args

* faster test

* common

* fix

* add alg option

* batch mode and policy serving

* multi serving test

* todo

* wip

* serving test

* doc async env

* num envs

* comments

* thread

* remove init hook

* update

* fix ppo

* comments1

* fix

* updates

* add jenkins tests

* fix

* fix pytorch

* fix

* fixes

* fix a3c policy

* fix squeeze

* fix trunc on apex

* fix squeezing for real

* update

* remove horizon test for now

* multiagent wip

* update

* fix race condition

* fix ma

* t

* doc

* st

* wip

* example

* wip

* working

* cartpole

* wip

* batch wip

* fix bug

* make other_batches None default

* working

* debug

* nit

* warn

* comments

* fix ppo

* fix obs filter

* update

* wip

* tf

* update

* fix

* cleanup

* cleanup

* spacing

* model

* fix

* dqn

* fix ddpg

* doc

* keep names

* update

* fix

* com

* docs

* clarify model outputs

* Update torch_policy_graph.py

* fix obs filter

* pass thru worker index

* fix

* rename

* vlad torch comments

* fix log action

* debug name

* fix lstm

* remove unused ddpg net

* remove conv net

* revert lstm

* wip

* wip

* cast

* wip

* works

* fix a3c

* works

* lstm util test

* doc

* clean up

* update

* fix lstm check

* move to end

* fix sphinx

* fix cmd

* remove bad doc

* envs

* vec

* doc prep

* models

* rl

* alg

* up

* clarify

* copy

* async sa

* fix

* comments

* fix a3c conf

* tune lstm

* fix reshape

* fix

* back to 16

* tuned a3c update

* update

* tuned

* optional

* merge

* wip

* fix up

* move pg class

* rename env

* wip

* update

* tip

* alg

* readme

* fix catalog

* readme

* doc

* context

* remove prep

* comma

* add env

* link to paper

* paper

* update

* rnn

* update

* wip

* clean up ev creation

* fix

* fix

* fix

* fix lint

* up

* no comma

* ma

* Update run_multi_node_tests.sh

* fix

* sphinx is stupid

* sphinx is stupid

* clarify torch graph

* no horizon

* fix config

* sb

* Update test_optimizers.py
2018-07-01 00:05:08 -07:00