Instead of relying on the node-ip custom resource for static task-to-node placement, this PR introduces an explicit NodeAffinitySchedulingStrategy with the following benefits:
1. Specify node using id instead of ip since ip may not be unique for each node.
2. Support soft constraint so the task can be tolerant to node failures.
After this PR, the node-ip custom resource can be deprecated.
Getting or creating a named actor is a common pattern, however it is somewhat esoteric in how to achieve this. Add a utility function and test that it doesn't cause any scary error messages.
Actor.options(name="my_singleton", get_if_exists=True).remote(args)
- Adds links to Job Submission from existing library tutorials where `ray submit` is used. When Jobs becomes GA, we should fully replace the uses of `ray submit` with Ray job submission and ensure this is tested.
- Adds docstrings for the Jobs SDK, which automatically show up in the API reference
- Improve the Job Submission main page
- Add a "Deployment Guide" landing page explaining when to use Ray Client vs Ray Jobs
Co-authored-by: Edward Oakes <ed.nmi.oakes@gmail.com>
@SongGuyang @Catch-Bull @edoakes I know we discussed this earlier, but after thinking about it some more I think a more reasonable default is for `pip check` to be `False` by default. My guess is that a lot of users (including myself) work inside an environment where `python -m pip check` fails, but the environment doesn't cause them any problems otherwise. So a lot of users will hit an error when trying a simple `runtime_env` `pip` example, and possibly give up. Another less important piece of evidence is that we had to set `pip_check = False` to make some CI tests pass in the original PR.
This also matches the default behavior of pip which allows this situation to occur in the first place: `pip install` doesn't error when there's a dependency conflict; rather the command succeeds, the package is installed and usable, and it prints a warning (which is confusingly titled "ERROR")
We don't support Windows entirely now.
## Checks
- [X] I've run `scripts/format.sh` to lint the changes in this PR.
- [ ] I've included any doc changes needed for https://docs.ray.io/en/master/.
- [ ] I've made sure the tests are passing. Note that there might be a few flaky tests, see the recent failures at https://flakey-tests.ray.io/
- Testing Strategy
- [ ] Unit tests
- [ ] Release tests
- [ ] This PR is not tested :(
This PR makes a number of major overhauls to the Ray core docs:
Add a key-concepts section for {Tasks, Actors, Objects, Placement Groups, Env Deps}.
Re-org the user guide to align with key concepts.
Rewrite the walkthrough to link to mini-walkthroughs in the key concept sections.
Minor tweaks and additional transition material.
The `py_modules` field of runtime_env supports uploading local Python modules for use on the Ray cluster. One gap in this is if the local Python module is in the form of a wheel (`.whl` file.) This PR adds the missing support for uploading and installing the `.whl` file.
Buffering writes to AWS S3 is highly recommended to maximize throughput. Reducing the number of remote I/O requests can make spilling to remote storages as effective as spilling locally.
In a test where 512GB of objects were created and spilled, varying just the buffer size while spilling to a S3 bucket resulted in the following runtimes.
Buffer Size | Runtime (s)
-- | --
Default | 3221.865916
256KB | 1758.885839
1MB | 748.226089
10MB | 526.406466
100MB | 494.830513
Based on these results, a default buffer size of 1MB has been added. This is the minimum buffer size used by AWS Kinesis Firehose, a streaming service for S3. On systems with larger availability, it is good to configure a larger buffer size.
For processes that reach the throughput limits provided by S3, we can remove that bottleneck by supporting more prefixes/buckets. These impacts are less noticeable as the performance gains from using a large buffer prevent us from reaching a bottleneck. The following runtimes were achieved by spilling 512GB with a 1MB buffer and varying prefixes.
Prefixes | Runtime (s)
-- | --
1 | 748.226089
3 | 527.658646
10 | 516.010742
Together these changes enable faster large-scale object spilling.
Co-authored-by: Ubuntu <ubuntu@ip-172-31-54-240.us-west-2.compute.internal>
Enables lineage reconstruction, which allows automatic recovery of task outputs, by default.
Also adds an info message to the driver whenever objects need to be reconstructed (not including recursive reconstruction).
This change is needed for object fusing to see performance increases on HDD. Currently, smaller object writes are slow even with fusing since the writes are not buffered (negating the point of fusing). Benchmarks show that while the default is sufficient for fast SSDs, on a slow HDD, increasing the buffer size reduces write times by several magnitudes.
### Performance Changes
A microbenchmark where 500KB objects were produced (then spilled) and consumed to observe changes in object fusing/spilling.
| Run | Produce (s) | Consume (s) | Total (s) |
| -- | -- | -- | -- |
| Baseline (original) | 347.332281 | 355.611272 | 705.560750 |
| Baseline (w/ fix) | 181.815852 | 347.692850 | 532.847759 |
| No fusing (original) | 453.574554 | 525.047998 | 981.620108 |
| No fusing (w/ fix) | 452.614848| 519.787698 | 975.412639 |
The baseline runs should be notably faster due to object fusing reducing I/O requests. With the fix, Ray's defaults allow this microbenchmark to have a 48% time reduction with negligible impact on runtime when fusing is disabled.
See [this followup](https://github.com/ray-project/ray/pull/22618#issuecomment-1054838715) for information on the differences between SSD and HDD performance with different buffer sizes.
Co-authored-by: Ubuntu <ubuntu@ip-172-31-54-240.us-west-2.compute.internal>
Combine `ParsedRuntimeEnv` and `RuntimeEnv` into `ray.runtime.RuntimeEnv`, details: #21495
- The `new RuntimeEnv` includes all external interfaces of `ParsedRuntimeEnv` and `old RuntimeEnv`.
- The `new RuntimeEnv` will be exposed directly to the user.
- example:
```python
runtime_env = ray.runtime_env.RuntimeEnv(working_dir="s3://workding_dir.zip",
pip=["requests"],
java_jars=["s3://jar1.zip"],
java_jvm_options=["-Dxxx=xxx"])
```
We should just encourage people to use the existing `get_runtime_context` API instead of introducing a new one here. Just removing the docs for now while we discuss this.
Runtime Environments is already GA in Ray 1.6.0. The latest doc is [here](https://docs.ray.io/en/master/ray-core/handling-dependencies.html#runtime-environments). And now, we already supported a [inheritance](https://docs.ray.io/en/master/ray-core/handling-dependencies.html#inheritance) behavior as follows (copied from the doc):
- The runtime_env["env_vars"] field will be merged with the runtime_env["env_vars"] field of the parent. This allows for environment variables set in the parent’s runtime environment to be automatically propagated to the child, even if new environment variables are set in the child’s runtime environment.
- Every other field in the runtime_env will be overridden by the child, not merged. For example, if runtime_env["py_modules"] is specified, it will replace the runtime_env["py_modules"] field of the parent.
We think this runtime env merging logic is so complex and confusing to users because users can't know the final runtime env before the jobs are run.
Current PR tries to do a refactor and change the behavior of Runtime Environments inheritance. Here is the new behavior:
- **If there is no runtime env option when we create actor, inherit the parent runtime env.**
- **Otherwise, use the optional runtime env directly and don't do the merging.**
Add a new API named `ray.runtime_env.get_current_runtime_env()` to get the parent runtime env and modify this dict by yourself. Like:
```Actor.options(runtime_env=ray.runtime_env.get_current_runtime_env().update({"X": "Y"}))```
This new API also can be used in ray client.
We shouldn't promote Runtime Environments as the only way to do things until all Core nightly and release tests are run using runtime environments.
This PR adds the prior approach (using cluster launcher commands) to the doc on equal footing, describing the differences between the two.
Co-authored-by: Richard Liaw <rliaw@berkeley.edu>
Co-authored-by: SangBin Cho <rkooo567@gmail.com>
Code formatting is disabled in several modules with the explanation
> [The module] ignores yapf because yapf doesn't allow comments right after code blocks,
but we put comments right after code blocks to prevent large white spaces
in the documentation.
Since we no longer use YAPF, it may be possible to re-enable code formatting on
these modules. I've added "FIXME" comments requesting developers to check
whether code formatter appeasements are still necessary.
Continuing docs overhaul, tune now has:
- [x] better landing page
- [x] a getting started guide
- [x] user guide was cut down, partially merged with FAQ, and partially integrated with tutorials
- [x] the new user guide contains guides to tune features and practical integrations
- [x] we rewrote some of the feature guides for clarity
- [x] we got rid of sphinx-gallery for this sub-project (only data and core left), as it looks bad and is unnecessarily complicated anyway (plus, makes the build slower)
- [x] sphinx-gallery examples are now moved to markdown notebook, as started in #22030.
- [x] Examples are tested in the new framework, of course.
There's still a lot one can do, but this is already getting too large. Will follow up with more fine-tuning next week.
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
Co-authored-by: Kai Fricke <krfricke@users.noreply.github.com>
Previously, local files corresponding to runtime env URIs were eagerly garbage collected as soon as there were no more references to them. In this PR, we store this data in a cache instead, so when the reference count for a URI drops to zero, instead of deleting it we simple mark it as unused in the cache. When the cache exceeds its size limit (default 10 GB) it will delete unused URIs until the cache is back under the size limit or there are no more unused URIs.
Design doc: https://docs.google.com/document/d/1x1JAHg7c0ewcOYwhhclbuW0B0UC7l92WFkF4Su0T-dk/edit
- Adds unit tests for caching and integration tests for working_dir caching
This PR adds pandas block format support by implementing `PandasRow`, `PandasBlockBuilder`, `PandasBlockAccessor`.
Note that `sort_and_partition`, `combine`, `merge_sorted_blocks`, `aggregate_combined_blocks` in `PandasBlockAccessor` redirects to arrow block format implementation for now. They'll be implemented in a later PR.