Commit graph

39 commits

Author SHA1 Message Date
Sven Mika
924f11cd45
[RLlib] Torch algos use now-framework-agnostic MultiGPUTrainOneStep execution op (~33% speedup for PPO-torch + GPU). (#17371) 2021-08-03 11:35:49 -04:00
Sven Mika
8a844ff840
[RLlib] Issues: 17397, 17425, 16715, 17174. When on driver, Torch|TFPolicy should not use ray.get_gpu_ids() (b/c no GPUs assigned by ray). (#17444) 2021-08-02 17:29:59 -04:00
Sven Mika
5a313ba3d6
[RLlib] Refactor: All tf static graph code should reside inside Policy class. (#17169) 2021-07-20 14:58:13 -04:00
Sven Mika
53206dd440
[RLlib] CQL BC loss fixes; PPO/PG/A2|3C action normalization fixes (#16531) 2021-06-30 12:32:11 +02:00
Sven Mika
d0014cd351
[RLlib] Policies get/set_state fixes and enhancements. (#16354) 2021-06-15 13:08:43 +02:00
Sven Mika
2d34216660
[RLlib] APEX-DQN: Bug fix for torch and add learning test. (#15762) 2021-05-20 09:27:03 +02:00
Sven Mika
16ddab49f5
[RLlib] Trainer._evaluate -> Trainer.evaluate; Also make evaluation possible w/o evaluation worker set. (#15591) 2021-05-12 12:16:00 +02:00
Sven Mika
e973b726c2
[RLlib] Support native tf.keras.Models (part 2) - Default keras models for Vision/RNN/Attention. (#15273) 2021-04-30 19:26:30 +02:00
Sven Mika
bb8a286cbc
[RLlib] Support native tf.keras.Model (milestone toward obsoleting ModelV2 class). (#14684) 2021-04-27 10:44:54 +02:00
Sven Mika
732197e23a
[RLlib] Multi-GPU for tf-DQN/PG/A2C. (#13393) 2021-03-08 15:41:27 +01:00
Sven Mika
8000258333
[RLlib] R2D2 Implementation. (#13933) 2021-02-25 12:18:11 +01:00
Sven Mika
775e685531
[RLlib] Issue #13824: compress_observations=True crashes for all algos not using a replay buffer. (#14034) 2021-02-18 21:36:32 +01:00
Sven Mika
dab241dcc6
[RLlib] Fix inconsistency wrt batch size in SampleCollector (traj. view API). Makes DD-PPO work with traj. view API. (#12063) 2020-11-19 19:01:14 +01:00
Sven Mika
62c7ab5182
[RLlib] Trajectory view API: Enable by default for PPO, IMPALA, PG, A3C (tf and torch). (#11747) 2020-11-12 16:27:34 +01:00
Sven Mika
5dc4b6686e
[RLlib] Implement DQN PyTorch distributional head. (#9589) 2020-07-25 09:29:24 +02:00
Sven Mika
fcdf410ae1
[RLlib] Tf2.x native. (#8752) 2020-07-11 22:06:35 +02:00
Sven Mika
43043ee4d5
[RLlib] Tf2x preparation; part 2 (upgrading try_import_tf()). (#9136)
* WIP.

* Fixes.

* LINT.

* WIP.

* WIP.

* Fixes.

* Fixes.

* Fixes.

* Fixes.

* WIP.

* Fixes.

* Test

* Fix.

* Fixes and LINT.

* Fixes and LINT.

* LINT.
2020-06-30 10:13:20 +02:00
Sven Mika
4ed796a7d6
[RLlib] Add testing Policy.compute_single_action() for all agents. (#8903) 2020-06-13 17:51:50 +02:00
Eric Liang
34bae27ac7
[rllib] Flexible multi-agent replay modes and replay_sequence_length (#8893) 2020-06-12 20:17:27 -07:00
Sven Mika
d8a081a185
[RLlib] Unity3D integration (n Unity3D clients vs learning server). (#8590) 2020-05-30 22:48:34 +02:00
Sven Mika
2746fc0476
[RLlib] Auto-framework, retire use_pytorch in favor of framework=... (#8520) 2020-05-27 16:19:13 +02:00
Eric Liang
9d012626e5
[rllib] Distributed exec workflow for impala (#8321) 2020-05-11 20:24:43 -07:00
Sven Mika
754290daad
[RLlib] Add light-weight Trainer.compute_action() tests for all Algos. (#8356) 2020-05-08 16:31:31 +02:00
Sven Mika
b95e28faea
[RLlib] APEX_DDPG (PyTorch) test case and docs. (#8288)
APEX_DDPG (PyTorch) test case and docs.
2020-05-04 09:36:27 +02:00
Eric Liang
2298f6fb40
[rllib] Port DQN/Ape-X to training workflow api (#8077) 2020-04-23 12:39:19 -07:00
Sven Mika
d6cb7d865e
[RLlib] Torch DQN (APEX) TD-Error/prio. replay fixes. (#8082)
PyTorch APEX_DQN with Prioritized Replay enabled would not work properly due to the td_error not being retrievable by the AsyncReplayOptimizer.
2020-04-20 10:03:25 +02:00
Sven Mika
428516056a
[RLlib] SAC Torch (incl. Atari learning) (#7984)
* Policy-classes cleanup and torch/tf unification.
- Make Policy abstract.
- Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch).
- Move some methods and vars to base Policy
  (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more.

* Fix `clip_action` import from Policy (should probably be moved into utils altogether).

* - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy).
- Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces).

* Add `config` to c'tor call to TFPolicy.

* Add missing `config` to c'tor call to TFPolicy in marvil_policy.py.

* Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract).

* Fix LINT errors in Policy classes.

* Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py.

* policy.py LINT errors.

* Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases).

* policy.py
- Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented).
- Fix docstring of `num_state_tensors`.

* Make QMIX torch Policy a child of TorchPolicy (instead of Policy).

* QMixPolicy add empty implementations of abstract Policy methods.

* Store Policy's config in self.config in base Policy c'tor.

* - Make only compute_actions in base Policy's an abstractmethod and provide pass
implementation to all other methods if not defined.
- Fix state_batches=None (most Policies don't have internal states).

* Cartpole tf learning.

* Cartpole tf AND torch learning (in ~ same ts).

* Cartpole tf AND torch learning (in ~ same ts). 2

* Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3

* Cartpole tf AND torch learning (in ~ same ts). 4

* Cartpole tf AND torch learning (in ~ same ts). 5

* Cartpole tf AND torch learning (in ~ same ts). 6

* Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning.

* WIP.

* WIP.

* SAC torch learning Pendulum.

* WIP.

* SAC torch and tf learning Pendulum and Cartpole after cleanup.

* WIP.

* LINT.

* LINT.

* SAC: Move policy.target_model to policy.device as well.

* Fixes and cleanup.

* Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default).

* Fixes and LINT.

* Fixes and LINT.

* Fix and LINT.

* WIP.

* Test fixes and LINT.

* Fixes and LINT.

Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
Sven Mika
1b31c11806
[RLlib] DDPG re-factor to fit into RLlib's functional algorithm builder API. (#7934) 2020-04-09 14:04:21 -07:00
Sven Mika
22ccc43670
[RLlib] DQN torch version. (#7597)
* Fix.

* Rollback.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* Fix.

* Fix.

* Fix.

* Fix.

* WIP.

* WIP.

* Fix.

* Test case fixes.

* Test case fixes and LINT.

* Test case fixes and LINT.

* Rollback.

* WIP.

* WIP.

* Test case fixes.

* Fix.

* Fix.

* Fix.

* Add regression test for DQN w/ param noise.

* Fixes and LINT.

* Fixes and LINT.

* Fixes and LINT.

* Fixes and LINT.

* Fixes and LINT.

* Comment

* Regression test case.

* WIP.

* WIP.

* LINT.

* LINT.

* WIP.

* Fix.

* Fix.

* Fix.

* LINT.

* Fix (SAC does currently not support eager).

* Fix.

* WIP.

* LINT.

* Update rllib/evaluation/sampler.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/evaluation/sampler.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/utils/exploration/exploration.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/utils/exploration/exploration.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* WIP.

* Fix.

* LINT.

* LINT.

* Fix and LINT.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* LINT.

* Fix.

* Fix and LINT.

* Update rllib/utils/exploration/exploration.py

* Update rllib/policy/dynamic_tf_policy.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/policy/dynamic_tf_policy.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Update rllib/policy/dynamic_tf_policy.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Fixes.

* WIP.

* LINT.

* Fixes and LINT.

* LINT and fixes.

* LINT.

* Move action_dist back into torch extra_action_out_fn and LINT.

* Working SimpleQ learning cartpole on both torch AND tf.

* Working Rainbow learning cartpole on tf.

* Working Rainbow learning cartpole on tf.

* WIP.

* LINT.

* LINT.

* Update docs and add torch to APEX test.

* LINT.

* Fix.

* LINT.

* Fix.

* Fix.

* Fix and docstrings.

* Fix broken RLlib tests in master.

* Split BAZEL learning tests into cartpole and pendulum (reached the 60min barrier).

* Fix error_outputs option in BAZEL for RLlib regression tests.

* Fix.

* Tune param-noise tests.

* LINT.

* Fix.

* Fix.

* test

* test

* test

* Fix.

* Fix.

* WIP.

* WIP.

* WIP.

* WIP.

* LINT.

* WIP.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-04-06 11:56:16 -07:00
Sven Mika
82c2d9faba
[RLlib] Fix broken RLlib tests in master. (#7894) 2020-04-05 09:34:23 -07:00
Sven Mika
1d4823c0ec
[RLlib] Add testing framework_iterator. (#7852)
* Add testing framework_iterator.

* LINT.

* WIP.

* Fix and LINT.

* LINT fix.
2020-04-03 12:24:25 -07:00
Sven Mika
5537fe13b0
[RLlib] Exploration API: ParamNoise Integration into DQN; working example/test cases. (#7814) 2020-04-03 10:44:25 -07:00
Sven Mika
e4bd5db4d8
[RLlib] Minimal ParamNoise PR. (#7772) 2020-03-28 16:16:30 -07:00
Sven Mika
93b5c38b7d
[RLlib] Noisy layers in DQN throw different errors (issue #7635). (#7750)
* Rollback.

* Fix issue 7635.

* Fix issue 7635.

* LINT and bug fix.
2020-03-26 22:08:34 -07:00
Eric Liang
be48e1964b
[rllib] Fix per-worker exploration in Ape-X; make more kwargs required for future safety (#7504)
* fix sched

* lintc

* lint

* fix

* add unit test

* fix

* format

* fix test

* fix test
2020-03-10 11:14:14 -07:00
Sven Mika
510c850651
[RLlib] SAC add discrete action support. (#7320)
* Exploration API (+EpsilonGreedy sub-class).

* Exploration API (+EpsilonGreedy sub-class).

* Cleanup/LINT.

* Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents).

* Add `error` option to deprecation_warning().

* WIP.

* Bug fix: Get exploration-info for tf framework.
Bug fix: Properly deprecate some DQN config keys.

* WIP.

* LINT.

* WIP.

* Split PerWorkerEpsilonGreedy out of EpsilonGreedy.
Docstrings.

* Fix bug in sampler.py in case Policy has self.exploration = None

* Update rllib/agents/dqn/dqn.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Update rllib/agents/trainer.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Change requests.

* LINT

* In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set

* Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps).

* Update rllib/evaluation/worker_set.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Review fixes.

* Fix default value for DQN's exploration spec.

* LINT

* Fix recursion bug (wrong parent c'tor).

* Do not pass timestep to get_exploration_info.

* Update tf_policy.py

* Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs.

* Bug fix tf-action-dist

* DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG).

* Switch off exploration when getting action probs from off-policy-estimator's policy.

* LINT

* Fix test_checkpoint_restore.py.

* Deprecate all SAC exploration (unused) configs.

* Properly use `model.last_output()` everywhere. Instead of `model._last_output`.

* WIP.

* Take out set_epsilon from multi-agent-env test (not needed, decays anyway).

* WIP.

* Trigger re-test (flaky checkpoint-restore test).

* WIP.

* WIP.

* Add test case for deterministic action sampling in PPO.

* bug fix.

* Added deterministic test cases for different Agents.

* Fix problem with TupleActions in dynamic-tf-policy.

* Separate supported_spaces tests so they can be run separately for easier debugging.

* LINT.

* Fix autoregressive_action_dist.py test case.

* Re-test.

* Fix.

* Remove duplicate py_test rule from bazel.

* LINT.

* WIP.

* WIP.

* SAC fix.

* SAC fix.

* WIP.

* WIP.

* WIP.

* FIX 2 examples tests.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* LINT.

* Renamed test file.

* WIP.

* Add unittest.main.

* Make action_dist_class mandatory.

* fix

* FIX.

* WIP.

* WIP.

* Fix.

* Fix.

* Fix explorations test case (contextlib cannot find its own nullcontext??).

* Force torch to be installed for QMIX.

* LINT.

* Fix determine_tests_to_run.py.

* Fix determine_tests_to_run.py.

* WIP

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Rename some stuff.

* Rename some stuff.

* WIP.

* update.

* WIP.

* Gumbel Softmax Dist.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP

* WIP.

* WIP.

* Hypertune.

* Hypertune.

* Hypertune.

* Lock-in.

* Cleanup.

* LINT.

* Fix.

* Update rllib/policy/eager_tf_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/agents/sac/sac_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/agents/sac/sac_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/models/tf/tf_action_dist.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/models/tf/tf_action_dist.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Fix items from review comments.

* Add dm_tree to RLlib dependencies.

* Add dm_tree to RLlib dependencies.

* Fix DQN test cases ((Torch)Categorical).

* Fix wrong pip install.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
Co-authored-by: Kristian Hartikainen <kristian.hartikainen@gmail.com>
2020-03-06 10:37:12 -08:00
Sven Mika
83e06cd30a
[RLlib] DDPG refactor and Exploration API action noise classes. (#7314)
* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix

* WIP.

* Add TD3 quick Pendulum regresison.

* Cleanup.

* Fix.

* LINT.

* Fix.

* Sort quick_learning test cases, add TD3.

* Sort quick_learning test cases, add TD3.

* Revert test_checkpoint_restore.py (debugging) changes.

* Fix old soft_q settings in documentation and test configs.

* More doc fixes.

* Fix test case.

* Fix test case.

* Lower test load.

* WIP.
2020-03-01 11:53:35 -08:00
Sven Mika
d537e9f0d8
[RLlib] Exploration API: merge deterministic flag with exploration classes (SoftQ and StochasticSampling). (#7155) 2020-02-19 12:18:45 -08:00
Sven Mika
6e1c3ea824
[RLlib] Exploration API (+EpsilonGreedy sub-class). (#6974) 2020-02-10 15:22:07 -08:00