Commit graph

5 commits

Author SHA1 Message Date
Sven Mika
7ec2223c84
[RLlib] DDPG PyTorch actor-model was missing sigmoid layer (#8188)
Fix DDPG PyTorch (missing sigmoid layer (to squash action outputs) after deterministic action outputs).
2020-04-26 23:08:13 +02:00
Sven Mika
f7e4dae852
[RLlib] DQN and SAC Atari benchmark fixes. (#7962)
* Add Atari SAC-discrete (learning MsPacman in 40k ts up to 780 rewards).
* SAC loss function test case fix.
2020-04-17 08:49:15 +02:00
Sven Mika
428516056a
[RLlib] SAC Torch (incl. Atari learning) (#7984)
* Policy-classes cleanup and torch/tf unification.
- Make Policy abstract.
- Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch).
- Move some methods and vars to base Policy
  (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more.

* Fix `clip_action` import from Policy (should probably be moved into utils altogether).

* - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy).
- Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces).

* Add `config` to c'tor call to TFPolicy.

* Add missing `config` to c'tor call to TFPolicy in marvil_policy.py.

* Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract).

* Fix LINT errors in Policy classes.

* Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py.

* policy.py LINT errors.

* Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases).

* policy.py
- Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented).
- Fix docstring of `num_state_tensors`.

* Make QMIX torch Policy a child of TorchPolicy (instead of Policy).

* QMixPolicy add empty implementations of abstract Policy methods.

* Store Policy's config in self.config in base Policy c'tor.

* - Make only compute_actions in base Policy's an abstractmethod and provide pass
implementation to all other methods if not defined.
- Fix state_batches=None (most Policies don't have internal states).

* Cartpole tf learning.

* Cartpole tf AND torch learning (in ~ same ts).

* Cartpole tf AND torch learning (in ~ same ts). 2

* Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3

* Cartpole tf AND torch learning (in ~ same ts). 4

* Cartpole tf AND torch learning (in ~ same ts). 5

* Cartpole tf AND torch learning (in ~ same ts). 6

* Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning.

* WIP.

* WIP.

* SAC torch learning Pendulum.

* WIP.

* SAC torch and tf learning Pendulum and Cartpole after cleanup.

* WIP.

* LINT.

* LINT.

* SAC: Move policy.target_model to policy.device as well.

* Fixes and cleanup.

* Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default).

* Fixes and LINT.

* Fixes and LINT.

* Fix and LINT.

* WIP.

* Test fixes and LINT.

* Fixes and LINT.

Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
Sven Mika
1d4823c0ec
[RLlib] Add testing framework_iterator. (#7852)
* Add testing framework_iterator.

* LINT.

* WIP.

* Fix and LINT.

* LINT fix.
2020-04-03 12:24:25 -07:00
Sven Mika
510c850651
[RLlib] SAC add discrete action support. (#7320)
* Exploration API (+EpsilonGreedy sub-class).

* Exploration API (+EpsilonGreedy sub-class).

* Cleanup/LINT.

* Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents).

* Add `error` option to deprecation_warning().

* WIP.

* Bug fix: Get exploration-info for tf framework.
Bug fix: Properly deprecate some DQN config keys.

* WIP.

* LINT.

* WIP.

* Split PerWorkerEpsilonGreedy out of EpsilonGreedy.
Docstrings.

* Fix bug in sampler.py in case Policy has self.exploration = None

* Update rllib/agents/dqn/dqn.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Update rllib/agents/trainer.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Change requests.

* LINT

* In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set

* Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps).

* Update rllib/evaluation/worker_set.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Review fixes.

* Fix default value for DQN's exploration spec.

* LINT

* Fix recursion bug (wrong parent c'tor).

* Do not pass timestep to get_exploration_info.

* Update tf_policy.py

* Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs.

* Bug fix tf-action-dist

* DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG).

* Switch off exploration when getting action probs from off-policy-estimator's policy.

* LINT

* Fix test_checkpoint_restore.py.

* Deprecate all SAC exploration (unused) configs.

* Properly use `model.last_output()` everywhere. Instead of `model._last_output`.

* WIP.

* Take out set_epsilon from multi-agent-env test (not needed, decays anyway).

* WIP.

* Trigger re-test (flaky checkpoint-restore test).

* WIP.

* WIP.

* Add test case for deterministic action sampling in PPO.

* bug fix.

* Added deterministic test cases for different Agents.

* Fix problem with TupleActions in dynamic-tf-policy.

* Separate supported_spaces tests so they can be run separately for easier debugging.

* LINT.

* Fix autoregressive_action_dist.py test case.

* Re-test.

* Fix.

* Remove duplicate py_test rule from bazel.

* LINT.

* WIP.

* WIP.

* SAC fix.

* SAC fix.

* WIP.

* WIP.

* WIP.

* FIX 2 examples tests.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* LINT.

* Renamed test file.

* WIP.

* Add unittest.main.

* Make action_dist_class mandatory.

* fix

* FIX.

* WIP.

* WIP.

* Fix.

* Fix.

* Fix explorations test case (contextlib cannot find its own nullcontext??).

* Force torch to be installed for QMIX.

* LINT.

* Fix determine_tests_to_run.py.

* Fix determine_tests_to_run.py.

* WIP

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Rename some stuff.

* Rename some stuff.

* WIP.

* update.

* WIP.

* Gumbel Softmax Dist.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP

* WIP.

* WIP.

* Hypertune.

* Hypertune.

* Hypertune.

* Lock-in.

* Cleanup.

* LINT.

* Fix.

* Update rllib/policy/eager_tf_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/agents/sac/sac_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/agents/sac/sac_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/models/tf/tf_action_dist.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/models/tf/tf_action_dist.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Fix items from review comments.

* Add dm_tree to RLlib dependencies.

* Add dm_tree to RLlib dependencies.

* Fix DQN test cases ((Torch)Categorical).

* Fix wrong pip install.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
Co-authored-by: Kristian Hartikainen <kristian.hartikainen@gmail.com>
2020-03-06 10:37:12 -08:00