Add benchmark data for 4x4 GPU setup.
Signed-off-by: Richard Liaw <rliaw@berkeley.edu>
Co-authored-by: Jimmy Yao <jiahaoyao.math@gmail.com>
Co-authored-by: Kai Fricke <kai@anyscale.com>
Following up from #26436, this PR adds a distributed benchmark test for Tensorflow FashionMNIST training. It compares training with Ray AIR with training with vanilla PyTorch.
Signed-off-by: Kai Fricke <kai@anyscale.com>
This PR adds a distributed benchmark test for Pytorch MNIST training. It compares training with Ray AIR with training with vanilla PyTorch.
In both cases, the same training loop is used. For Ray AIR, we use a TorchTrainer with 4 CPU workers. For vanilla PyTorch, we upload a training script and kick it off (using Ray tasks) in subprocesses on each node. In both cases, we collect the end to end runtime.
Signed-off-by: Kai Fricke <kai@anyscale.com>
The package "ml" should be renamed to "air".
Main question: Keep a `ml.py` with `from ray.air import *` for some level of backwards compatibility?
I'd go for no to force people to use the new structure.
It fixes the mysterious error when all cluster env build is failing when pip uninstall / pip install is written in 2 lines. The root cause will be fixed later
OSS release tests currently run with hardcoded Python 3.7 base. In the future we will want to run tests on different python versions.
This PR adds support for a new `python` field in the test configuration. The python field will determine both the base image used in the Buildkite runner docker container (for Ray client compatibility) and the base image for the Anyscale cluster environments.
Note that in Buildkite, we will still only wait for the python 3.7 base image before kicking off tests. That is acceptable, as we can assume that most wheels finish in a similar time, so even if we wait for the 3.7 image and kick off a 3.8 test, that runner will wait maybe for 5-10 more minutes.