This PR implements the basic log APIs. For the better APIs (like higher level APIs like ray logs actors), it will be implemented after the internal API review is done.
# If there's only 1 match, print a file content. Otherwise, print all files that match glob.
ray logs [glob_filter] --node-id=[head node by default]
Args:
--tail: Tail the last X lines
--follow: Follow the new logs
--actor-id: The actor id
--pid --node-ip: For worker logs
--node-id: The node id of the log
--interval: When --follow is specified, logs are printed with this interval. (should we remove it?)
Including the Bazel build files in the wheel leads to problems if the Ray wheels are brought in as a dependency from another bazel workspace, since that workspace will not recurse into the directories of the wheel that contain BUILD files -- this can lead to dropped files.
This only happens for macOS wheels, on linux wheels the BUILD files were already excluded.
Timeout is only introduced in GcsClient due to the reason that ray client is not defining the timeout well for their API and it's a lot of effort to make it work e2e. For built-in component, we should use GcsClient directly.
This PR use GcsClient to replace the old one to integrate GCS HA with Ray Serve.
This PR fixes two issues with the __array__ protocol on the tensor extension:
1. The __array__ protocol on TensorArrayElement was missing the dtype parameter, causing np.asarray(tae, dtype=some_dtype) calls to fail. This PR adds support for the dtype argument.
2. TensorArray and TensorArrayElement didn't support NumPy's scalar casting semantics for single-element tensors. This PR adds support for these scalar casting semantics.
Currently when Raylets die, it is hard to figure out:
if a Raylet died at all in a cluster. Usually we have to check on nodes where a number of workers died and see if the Raylet has died as well.
reason of Raylet's death.
With this PR, if a Raylet dies from a reason other than SIGTERM, the dashboard agent will report the failure along with last 20 lines of the Raylet log.
This exposes a low-cost way to perform a pseudo global shuffle.
For extremely large datasets that span multiple nodes, contiguous blocks will often be colocated on the same node. This leads to hot spots during iteration of the dataset in which single nodes (1) must send a lot of data over the network, and (2) perform lots of disk reads if the dataset is spilled to disk.
This allows the workload to be spread across the nodes on which the dataset blocks are on.
Stats construction on the from_arrow and from_numpy (and from_pandas with Pandas block support disabled) is currently broken since we weren't resolving the block metadata before passing it to the stats, causing future ds.stats() calls to fail. This PR fixes this and adds some test coverage.
Drivebys:
- Adds stats for from_pandas() zero-copy path (metadata fetch only).
- Changes "from_numpy" stats stage name to "from_numpy_refs", to be consistent with stats for other from_*() APIs.
Breaks the hard dependency on Preprocessor imports for type hints in AIR. Preparation for move of Preprocessors to `ray.data`.
Trainer still has a hard dependency due to an `isinstance` check.
This test was flaky because actor tasks can fail if submitted when the actor process is failed or restarting. This PR changes the test to be more stressful so that the error is easier to reproduce and changes the max_retries parameter to -1 so that the actor task will succeed.
Related issue number
Closes#24942.
Unreverts #24812, skipping the memory releasing tests that are already flaky. We have a separate issue tracking the unskipping of these memory releasing tests, once we find a more reliable way to test them.
* Revert "Revert "Revert "Revert "[Datasets] [Tensor Story - 1/2] Automatically provide tensor views to UDFs and infer tensor blocks for pure-tensor datasets."" (#25031)" (#25057)"
This reverts commit fb2933a78f.
* Skip shuffle memory release test.
**Update**: This PR is now part 3 of a three PR group to consolidate the checkpoints.
1. Part 1 adds the common checkpoint management class #24771
2. Part 2 adds the integration for Ray Train #24772
3. This PR builds on #24772 and includes all changes. It moves the Ray Tune integration to use the new common checkpoint manager class.
Old PR description:
This PR consolidates the Ray Train and Tune checkpoint managers. These concepts previously did something very similar but in different modules. To simplify maintenance in the future, we've consolidated the common core.
- This PR keeps full compatibility with the previous interfaces and implementations. This means that for now, Train and Tune will have separate CheckpointManagers that both extend the common core
- This PR prepares Tune to move to a CheckpointStrategy object
- In follow-up PRs, we can further unify interfacing with the common core, possibly removing any train- or tune-specific adjustments (e.g. moving to setup on init rather on runtime for Ray Train)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
Follow up on our last discussion for supporting piecemeal fashion air users.
Only did for tensorflow for now, want to collect some feedback on API naming, package structure etc and I will add others.
Currently, each function decorated with `@ray.remote` is marked with type annotations as a `RemoteFunction` class (only used for type annotations, autocompletion, inline errors, etc). The current class takes several *type parameters*. And then it uses those parameters in the extended `func.remote()` method.
But with the current type annotations, it marks any of the unused type parameters as `None`. This means that calling the `.remote()` method would check the first (actual) arguments and the rest are marked as `None`, but that means that for type annotations it considers "correct" to pass extra `None` arguments, while actually, that would not be valid. So, this doesn't show an error, but it should:
<img width="371" alt="Screenshot 2022-06-07 at 05 38 48" src="https://user-images.githubusercontent.com/1326112/172360355-9b344220-7824-4b5c-87da-038f5b53fe04.png">
...those 2 extra `None` values should be marked as invalid.
After this PR, those invalid extra arguments would be marked as invalid:
<img width="588" alt="Screenshot 2022-06-07 at 05 42 10" src="https://user-images.githubusercontent.com/1326112/172360956-424b40d4-8197-4663-8298-617a1df37658.png">
And:
<img width="687" alt="Screenshot 2022-06-07 at 05 42 50" src="https://user-images.githubusercontent.com/1326112/172361140-eb93c675-f5d6-4e0c-b9b2-83c4801bb450.png">
## More context
I also tried the new `TypeVarTuple`, it might simplify these type annotations in the future, but it's not currently supported by mypy yet, it's a very recent addition to the language (and `typing_extensions`) so it's probably too early to adopt it.
This adds the following options to DatasetConfig, which can be used to enable streaming ingest.
```
# Whether the dataset should be streamed into memory using pipelined reads.
# When enabled, get_dataset_shard() returns DatasetPipeline instead of Dataset.
# The amount of memory to use is controlled by `stream_window_size`.
# False by default for all datasets.
use_stream_api: Optional[bool] = None
# Configure the streaming window size in bytes. A typical value is something like
# 20% of object store memory. If set to -1, then an infinite window size will be
# used (similar to bulk ingest). This only has an effect if use_stream_api is set.
# Set to 1.0 GiB by default.
stream_window_size: Optional[float] = None
# Whether to enable global shuffle (per pipeline window in streaming mode). Note
# that this is an expensive all-to-all operation, and most likely you want to use
# local shuffle instead.
# False by default for all datasets.
global_shuffle: Optional[bool] = None
```