* Fix DDPG, since it is based on GenericOffPolicyTrainer.
* Fix QMix, SAC, and MADDPA too.
* Undo QMix change.
* Fix DQN input batch type. Always use SampleBatch.
* apex ddpg should not use replay_buffer_config yet.
* Make eager tf policy to use SampleBatch.
* lint
* LINT.
* Re-enable RLlib broken tests to make sure things work ok now.
* fixes.
Co-authored-by: sven1977 <svenmika1977@gmail.com>
* [RLlib] Unify the way we create and use LocalReplayBuffer for all the agents.
This change
1. Get rid of the try...except clause when we call execution_plan(),
and get rid of the Deprecation warning as a result.
2. Fix the execution_plan() call in Trainer._try_recover() too.
3. Most importantly, makes it much easier to create and use different types
of local replay buffers for all our agents.
E.g., allow us to easily create a reservoir sampling replay buffer for
APPO agent for Riot in the near future.
* Introduce explicit configuration for replay buffer types.
* Fix is_training key error.
* actually deprecate buffer_size field.
* Exploration API (+EpsilonGreedy sub-class).
* Exploration API (+EpsilonGreedy sub-class).
* Cleanup/LINT.
* Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents).
* Add `error` option to deprecation_warning().
* WIP.
* Bug fix: Get exploration-info for tf framework.
Bug fix: Properly deprecate some DQN config keys.
* WIP.
* LINT.
* WIP.
* Split PerWorkerEpsilonGreedy out of EpsilonGreedy.
Docstrings.
* Fix bug in sampler.py in case Policy has self.exploration = None
* Update rllib/agents/dqn/dqn.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* WIP.
* Update rllib/agents/trainer.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* WIP.
* Change requests.
* LINT
* In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set
* Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps).
* Update rllib/evaluation/worker_set.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* Review fixes.
* Fix default value for DQN's exploration spec.
* LINT
* Fix recursion bug (wrong parent c'tor).
* Do not pass timestep to get_exploration_info.
* Update tf_policy.py
* Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs.
* Bug fix tf-action-dist
* DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG).
* Switch off exploration when getting action probs from off-policy-estimator's policy.
* LINT
* Fix test_checkpoint_restore.py.
* Deprecate all SAC exploration (unused) configs.
* Properly use `model.last_output()` everywhere. Instead of `model._last_output`.
* WIP.
* Take out set_epsilon from multi-agent-env test (not needed, decays anyway).
* WIP.
* Trigger re-test (flaky checkpoint-restore test).
* WIP.
* WIP.
* Add test case for deterministic action sampling in PPO.
* bug fix.
* Added deterministic test cases for different Agents.
* Fix problem with TupleActions in dynamic-tf-policy.
* Separate supported_spaces tests so they can be run separately for easier debugging.
* LINT.
* Fix autoregressive_action_dist.py test case.
* Re-test.
* Fix.
* Remove duplicate py_test rule from bazel.
* LINT.
* WIP.
* WIP.
* SAC fix.
* SAC fix.
* WIP.
* WIP.
* WIP.
* FIX 2 examples tests.
* WIP.
* WIP.
* WIP.
* WIP.
* WIP.
* Fix.
* LINT.
* Renamed test file.
* WIP.
* Add unittest.main.
* Make action_dist_class mandatory.
* fix
* FIX.
* WIP.
* WIP.
* Fix.
* Fix.
* Fix explorations test case (contextlib cannot find its own nullcontext??).
* Force torch to be installed for QMIX.
* LINT.
* Fix determine_tests_to_run.py.
* Fix determine_tests_to_run.py.
* WIP
* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).
* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).
* Rename some stuff.
* Rename some stuff.
* WIP.
* WIP.
* Fix SAC.
* Fix SAC.
* Fix strange tf-error in ray core tests.
* Fix strange ray-core tf-error in test_memory_scheduling test case.
* Fix test_io.py.
* LINT.
* Update SAC yaml files' config.
Co-authored-by: Eric Liang <ekhliang@gmail.com>
* Remove all __future__ imports from RLlib.
* Remove (object) again from tf_run_builder.py::TFRunBuilder.
* Fix 2xLINT warnings.
* Fix broken appo_policy import (must be appo_tf_policy)
* Remove future imports from all other ray files (not just RLlib).
* Remove future imports from all other ray files (not just RLlib).
* Remove future import blocks that contain `unicode_literals` as well.
Revert appo_tf_policy.py to appo_policy.py (belongs to another PR).
* Add two empty lines before Schedule class.
* Put back __future__ imports into determine_tests_to_run.py. Fails otherwise on a py2/print related error.
* Qmix fix.
-Current version of double Q learning is incorrect; it selects actions
at timestep t instead of t+1 when computing the t+1 Q value.
* Allow extra obs dict keys
* Move Q-value-computing replay code to own function
* Run the autoformatter
* use better terms in comments ("policy" network instead of "live" network)