Continuing docs overhaul, tune now has:
- [x] better landing page
- [x] a getting started guide
- [x] user guide was cut down, partially merged with FAQ, and partially integrated with tutorials
- [x] the new user guide contains guides to tune features and practical integrations
- [x] we rewrote some of the feature guides for clarity
- [x] we got rid of sphinx-gallery for this sub-project (only data and core left), as it looks bad and is unnecessarily complicated anyway (plus, makes the build slower)
- [x] sphinx-gallery examples are now moved to markdown notebook, as started in #22030.
- [x] Examples are tested in the new framework, of course.
There's still a lot one can do, but this is already getting too large. Will follow up with more fine-tuning next week.
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
Co-authored-by: Kai Fricke <krfricke@users.noreply.github.com>
* [tune] make `tune.with_parameters()` work with the class API
* Update python/ray/tune/utils/trainable.py
Co-authored-by: Richard Liaw <rliaw@berkeley.edu>
Co-authored-by: Richard Liaw <rliaw@berkeley.edu>
* Refactor placement group factory object to accept placement_group arguments instead of callables
* Convert resources to pgf
* Enable placement groups per default
* Fix tests WIP
* Fix stop/resume with placement groups
* Fix progress reporter test
* Fix trial executor tests
* Check resource for trial, not resource object
* Move ENV vars into class
* Fix tests
* Sphinx
* Wait for trial start in PBT
* Revert merge errors
* Support trial reuse with placement groups
* Better check for just staged trials
* Fix trial queuing
* Wait for pg after trial termination
* Clean up PGs before tune run
* No PG settings in pbt scheduler
* Fix buffering tests
* Skip test if ray reports erroneous available resources
* Disable PG for cluster resource counting test
* Debug output for tests
* Output in-use resources for placement groups
* Don't start new trial on trial start failure
* Add docs
* Cleanup PGs once futures returned
* Fix placement group shutdown
* Use updated_queue flag
* Apply suggestions from code review
* Apply suggestions from code review
* Update docs
* Reuse placement groups independently from actors
* Do not remove placement groups for paused trials
* Only continue enqueueing trials if it didn't fail the first time
* Rename parameter
* Fix pause trial
* Code review + try_recover
* Update python/ray/tune/utils/placement_groups.py
Co-authored-by: Richard Liaw <rliaw@berkeley.edu>
* Move placement group lifecycle management
* Move total used resources to pg manager
* Update FAQ example
* Requeue trial if start was unsuccessful
* Do not cleanup pgs at start of run
* Revert "Do not cleanup pgs at start of run"
This reverts commit 933d9c4c
* Delayed PG removal
* Fix trial requeue test
* Trigger pg cleanup on status update
* Fix tests
* Fix docs
* fix-test
Signed-off-by: Richard Liaw <rliaw@berkeley.edu>
Co-authored-by: Richard Liaw <rliaw@berkeley.edu>
* Support `yield` and `return` statements in Tune trainable functions
* Support anonymous metric with ``tune.report(value)``
* Raise on invalid return/yield value
* Fix end to end reporter test
* create guide gallery for Tune
* mods
* ok
* fix
* fix_up_gallery
* ok
* Apply suggestions from code review
Co-Authored-By: Sven Mika <sven@anyscale.io>
* Apply suggestions from code review
Co-Authored-By: Sven Mika <sven@anyscale.io>
Co-authored-by: Sven Mika <sven@anyscale.io>