This PR adds .iter_torch_batches() and .iter_tf_batches() convenience APIs, which takes care of ML framework tensor conversion, the narrow tensor waste for the .iter_batches() call ("numpy" format), and unifies batch formats around two options: a single tensor for simple/pure-tensor/single-column datasets, and a dictionary of tensors for multi-column datasets.
Add benchmark data for 4x4 GPU setup.
Signed-off-by: Richard Liaw <rliaw@berkeley.edu>
Co-authored-by: Jimmy Yao <jiahaoyao.math@gmail.com>
Co-authored-by: Kai Fricke <kai@anyscale.com>
Co-authored-by: Eric Liang <ekhliang@gmail.com>
Co-authored-by: matthewdeng <matthew.j.deng@gmail.com>
Co-authored-by: Matthew Deng <matt@anyscale.com>
Co-authored-by: Richard Liaw <rliaw@berkeley.edu>
Signed-off-by: Amog Kamsetty <amogkamsetty@yahoo.com>
As discussed offline, allow configurability for feature columns and keep columns in BatchPredictor for better scoring UX on test datasets.
Updates TensorflowPredictor to use the new _predict_pandas API.
Also as agreed upon offline, removes the extra configurations from TensorflowPredictor (column selection, concatenation) in favor of having this be done via a Preprocessor.
Update documentation to use `session.report`.
Next steps:
1. Update our internal caller to use `session.report`. Most importantly, CheckpointManager and DataParallelTrainer.
2. Update `get_trial_resources` to use PGF notions to incorporate the requirement of ResourceChangingScheduler. @Yard1
3. After 2 is done, change all `tune.get_trial_resources` to `session.get_trial_resources`
4. [internal implementation] remove special checkpoint handling logic from huggingface trainer. Optimize the flow for checkpoint conversion with `session.report`.
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
1. Update `DummyTrainer` to take `num_epochs` instead of `runtime_seconds`.
1. Ray Train expects equal number of calls to `train.report()`. Different workers may run at different speeds and terminate after different epoch numbers, which causes an error.
2. Add `generate_epochs` to support `DatasetPipeline` when `use_stream_api` is True.
3. Update `__main__` code to support testing different configurations.
This PR:
* Allows the user to set `keep_checkpoints_num` and `checkpoint_score_attr` in `RunConfig` using the `CheckpointStrategy` dataclass
* Adds two new fields to the `Result` object - `best_checkpoints` - a list of saved best checkpoints as determined by `CheckpointingConfig`.
As the integration logging callbacks are commonly used with AIR Trainers, they should be moved from the tune package to the air package. The old imports will still work, but raise a deprecation warning.