The pipeline will spill objects when splitting the dataset into multiple equal parts.
Co-authored-by: Ubuntu <ubuntu@ip-172-31-32-136.us-west-2.compute.internal>
Add the html template files in `ray/widgets/templates/` to the wheel to make sure the Jupyter widget that is displayed in `ray.init()` works for the Ray wheels.
#26442 didn't trigger doc tests (fixed with #26466). The PR broke lightgbm prediction with categorical variables - this PR fixes this.
In a follow-up we should specifically test prediction with categorical variables.
Signed-off-by: Kai Fricke <kai@anyscale.com>
When working with Ray Train, using the ray.train.torch.prepare_data_loader method with a dataset that returns a dictionary instead of a tuple from its __getitem__ method causes issues.
Co-authored-by: matthewdeng <matthew.j.deng@gmail.com>
Discards returns of user defined train loop functions to prevent deser issues with eg. torch models. Those returns are not used anywhere in AIR, so there is no loss of functionality.
This PR ensures that the new trial resources set by `ResourceChangingScheduler` are respected by the train loop logic by modifying the scaling config to match. Previously, even though trials had their resources updated, the scaling config was not modified which lead to eg. new workers not being spawned in the `DataParallelTrainer` even though resources were available.
In order to accomplish this, `ScalingConfigDataClass` is updated to allow equality comparisons with other `ScalingConfigDataClass`es (using the underlying PGF) and to create a `ScalingConfigDataClass` from a PGF.
Please note that this is an internal only change intended to actually make `ResourceChangingScheduler` work. In the future, `ResourceChangingScheduler` should be updated to operate on `ScalingConfigDataClass`es instead of PGFs as it is now. That will require a deprecation cycle.
This adds a parameterized `test_predict` test for all predictors to test prediction with all data batch types.
Signed-off-by: Kai Fricke <kai@anyscale.com>
There are cases that same object is being spilled twice due to failures. This made two spill worker overwrites the same file and causing corruption. The fix is as simple as ensure the uniqueness of the file.
close#26395
This PR adds GPU support for pytorch and tensorflow predictor, as well as automatic setting `use_gpu` flag in `BatchPredictor`.
Notable changes:
- Added `use_gpu` flag in the constructor of `TorchPredictor` and `TensorflowPredictor` (note it's slightly different from our latest design doc that puts this flag at `predict()` call)
- Added `use_gpu` flag to `SklearnPredictor` so its interface is compatible with `BatchPredictor`
- Code to move both model weights and input tensor to default visible GPU at index 0 if flag is set
- parametrized existing predictor tests to use GPU for both CPU & GPU coverage
- Changed BUILD CI tests with an added `gpu` tag (I'm not 100% sure if that's a right way tho)
Follow ups:
https://github.com/ray-project/ray/issues/26249 is created in case our host has multiple GPU devices. It's a bit out of scope for this PR, but for GPU batch inference ideally we should be able to evenly use all GPU devices on host where CPU & DRAM are busy with pre-fetching + data movement to GPU. We might approximately do the same by scheduling same # of Predictor instances on the host, but that's worth verifying once benchmarks are set.
The old user-facing TrialCheckpoint class has been deprecated in favor of `ray.ml.Checkpoint` and will be removed with this PR.
The main change in this PR is to delete the old `TrialCheckpoint` class and replace remaining API calls (e.g. `checkpoint.local_path`) with the correct AIR equivalents.
One issue that comes up is that with Ray client usage, checkpoint directories are not available on the local node (the client). Thus, we can't construct `Checkpoint` objects easily. (Previously, the TrialCheckpoint object held a reference to the location, even if it is not locally available). There are ongoing discussions on how to resolve this in the future. For now, we print an error when such a checkpoint is requested.
Depends on #25805
Signed-off-by: Kai Fricke <kai@anyscale.com>
CheckAlive in GCS is only for checking GCS's liveness. But we also need to check the liveness for raylet.
In KubeRay, we can check the liveness directly by monitoring the raylet's liveness. But it's not good enough given that raylet's process liveness is not directly related to raylet's liveness.
For example, during a network partition, raylet is not able to connect to GCS. GCS mark raylet as dead. So for the cluster, although raylet process is still alive, it can't be treated as alive because GCS has told all the nodes that it's dead.
So for KubeRay, it also needs to talk with GCS to check whether it's alive or not.
This PR extends the CheckAlive API to include raylet address so that we can query GCS to get the cluster status directly.
Updates TensorflowPredictor to use the new _predict_pandas API.
Also as agreed upon offline, removes the extra configurations from TensorflowPredictor (column selection, concatenation) in favor of having this be done via a Preprocessor.
Add external hook to /api/component_activities endpoint in dashboard snapshot router
Change is_active field of RayActivityResponse to take an enum RayActivityStatus instead of bool. This is a backward incompatible change, but should be ok because [dashboard] Add component_activities API #25996 wasn't included in any branch cuts. RayActivityResponse now supports informing when there was an error getting the activity observation and the reason.
We currently use our own serialization to ship checkpoints as objects. Instead we should use the Checkpoint class. This PR also adds support to create results from checkpoints pointing to object references.
Depends on #26351
Signed-off-by: Kai Fricke <kai@anyscale.com>
#25655 refactored syncing but it introduced a regression - previously, dirs of any size could have been synced, but now only dirs below the default limit of 1 GB can be. This PR fixes this regression allowing dirs of any size to be synced.
With this PR, files put into directory checkpoints that were dict checkpoints will be serialized and retained when a subsequent to_dict() is called. This is to enable storing additional files, as e.g. needed by Ray Tune.
Signed-off-by: Kai Fricke <kai@anyscale.com>
We added drop_columns() API to datasets in #26200, so updating documentation here to use the new API - doc/source/data/examples/nyc_taxi_basic_processing.ipynb. In addition, fixing some minor typos after proofreading the datasets documentation.
Uses the new AIR Train API for examples and tests.
The `Result` object gets a new attribute - `log_dir`, pointing to the Trial's `logdir` allowing users to access tensorboard logs and artifacts of other loggers.
This PR only deals with "low hanging fruit" - tests that need substantial rewriting or Train user guide are not touched. Those will be updated in followup PRs.
Tests and examples that concern deprecated features or which are duplicated in AIR have been removed or disabled.
Requires https://github.com/ray-project/ray/pull/25943 to be merged in first
Alternative to #26356 - here we just pin raydp-nightly and resolve the dependency issues in follow-up PRs.
This is to quickly unblock CI.
Signed-off-by: Kai Fricke <kai@anyscale.com>
This PR unified the semantics of some workflow APIs.
Those workflow APIs acts on workflow tasks so they could be blocked for a long time. So we have both the blocking and non-blocking versions for them: xxx for blocking and xxx_async for non-blocking APIs.
In Ray 2.0, we want to achieve api server HA.
Originally serve endpoints are in head node.
This pr moves serve endpoints to dashboard agents, so they will be HA due to multiple replica of dashboard agent.