Sven Mika
e74947cc94
[RLlib] Env directory cleanup and tests. ( #13082 )
2021-01-19 10:09:39 +01:00
Sven Mika
93c0a5549b
[RLlib] Deprecate vf_share_layers
in top-level PPO/MAML/MB-MPO configs. ( #13397 )
2021-01-19 09:51:35 +01:00
Michael Luo
42cd414e5b
[RLlib] New Offline RL Algorithm: CQL (based on SAC) ( #13118 )
2020-12-30 10:11:57 -05:00
Sven Mika
deb33bce84
[RLlib] Add DQN SoftQ learning test case. ( #12712 )
2020-12-10 14:55:19 +01:00
Sven Mika
bb03e2499b
[RLlib] PyBullet Env native support via env str-specifier (if installed). ( #12209 )
2020-11-30 12:41:24 +01:00
Sven Mika
4afaa46028
[RLlib] Increase the scope of RLlib's regression tests. ( #12200 )
2020-11-24 22:18:31 +01:00
Edward Oakes
32d159a2ed
Fix release directory & RELEASE_PROCESS.md ( #12269 )
2020-11-23 14:28:59 -06:00
Sven Mika
b6b54f1c81
[RLlib] Trajectory view API: enable by default for SAC, DDPG, DQN, SimpleQ ( #11827 )
2020-11-16 10:54:35 -08:00
Michael Luo
59bc1e6c09
[RLLib] MAML extension for all models except RNNs ( #11337 )
2020-11-12 16:51:40 -08:00
Michael Luo
6e6c680f14
MBMPO Cartpole ( #11832 )
...
* MBMPO Cartpole Done
* Added doc
2020-11-12 10:30:41 -08:00
Sven Mika
5b788ccb13
[RLlib] Trajectory view API (prep PR for switching on by default across all RLlib; plumbing only) ( #11717 )
2020-11-03 12:53:34 -08:00
Sven Mika
ce96b03b07
[RLlib] MB-MPO cleanup (comments, docstrings, type annotations). ( #11033 )
2020-10-06 20:28:16 +02:00
Michael Luo
47b499d899
Cartpole MAML + Discrete ( #11028 )
2020-10-02 12:56:34 +02:00
Sven Mika
4b278c36fc
[RLlib] Behavioral Cloning (from MARWIL). ( #10619 )
2020-09-09 17:33:21 +02:00
Michael Luo
8e613652af
[RLLib] MBMPO Fixes ( #10296 )
2020-09-09 09:34:34 +02:00
Sven Mika
8a891b3c30
[RLlib] SAC n_step > 1. ( #10567 )
2020-09-05 22:26:42 +02:00
Michael Luo
4e9888ce2f
[RLlib] Dreamer ( #10172 )
2020-08-26 13:24:05 +02:00
Michael Luo
4d7bd8c892
[RLlib] Implementation of "Model-based Meta Policy Optimization" (MB MPO) ( #9409 )
2020-08-02 18:12:09 +02:00
Sven Mika
617eb8f279
[RLlib] Issue 9402 MARWIL producing nan rewards. ( #9429 )
2020-07-14 05:07:16 +02:00
Sven Mika
b4c0b942fe
[RLlib] Remove requirement for dataclasses in rllib (not supported in py3.5) ( #9237 )
2020-07-01 17:31:44 +02:00
Michael Luo
cf0894d396
[rllib] MAML Agent ( #8862 )
...
* Halfway done with transferring MAML to new Ray
* MAML Beta Out
* Debugging MAML atm
* Distributed Execution
* Pendulum Mass Working
* All experiments complete
* Cleaned up codebase
* Travis CI
* Travis CI
* Tests
* Merged conflicts
* Fixed variance bug conflict
* Comment resolved
* Apply suggestions from code review
fixed test_maml
* Update rllib/agents/maml/tests/test_maml.py
* asdf
* Fix testing
Co-authored-by: Sven Mika <sven@anyscale.io>
2020-06-23 09:48:23 -07:00
Sven Mika
2589309cf0
[RLlib] Make sure torch and tf behave the same wrt conv2d nets. ( #8785 )
2020-06-20 00:05:19 +02:00
Sven Mika
7008902cff
[RLlib] Minor rllib.utils
cleanup. ( #8932 )
2020-06-16 08:52:20 +02:00
Sven Mika
8d1ccfd0f7
[RLlib] Issue 8889: action clipping bug ppo not learning mujoco ( #8898 )
2020-06-11 19:17:43 +02:00
Sven Mika
a90cd0fcbb
[RLlib] Unity3d soccer benchmarks ( #8834 )
2020-06-11 14:29:57 +02:00
Sven Mika
c74dc58f8b
[RLlib] Fix use_lstm
flag for ModelV2 (w/o ModelV1 wrapping) and add it for PyTorch. ( #8734 )
2020-06-05 15:40:30 +02:00
Sven Mika
97d524c075
[RLlib] Issue 8769 broken OOM tests_dir cases (R & S). ( #8770 )
2020-06-05 08:34:21 +02:00
Sven Mika
2746fc0476
[RLlib] Auto-framework, retire use_pytorch
in favor of framework=...
( #8520 )
2020-05-27 16:19:13 +02:00
Sven Mika
baa053496a
[RLlib] Benchmark and regression test yaml cleanup and restructuring. ( #8414 )
2020-05-26 11:10:27 +02:00
Sven Mika
3a234ed9e3
[RLlib] Error: "Unknown trainable [some rllib algo name]" ( #8525 )
2020-05-21 08:59:32 +02:00
Eric Liang
9d012626e5
[rllib] Distributed exec workflow for impala ( #8321 )
2020-05-11 20:24:43 -07:00
Sven Mika
166bb5d690
[RLlib] IMPALA PyTorch ( #8287 )
...
This PR adds an IMPALA PyTorch implementation.
- adds compilation tests for LSTM and w/o LSTM.
- adds learning test for CartPole.
2020-05-03 13:44:25 +02:00
Sven Mika
b23b6addfc
[RLlib] Stabilize Pendulum-v0 regression test cases. ( #8232 )
...
Stabilize Pendulum regression test cases.
2020-04-30 15:48:11 +02:00
Sven Mika
499ad5fbe4
[RLlib] PyTorch version of APPO. ( #8120 )
...
- Translate all vtrace functionality to torch and added torch to the framework_iterator-loop in all existing vtrace test cases.
- Add learning test cases for APPO torch (both w/ and w/o v-trace).
- Add quick compilation tests for APPO (tf and torch, v-trace and no v-trace).
2020-04-23 09:11:12 +02:00
Sven Mika
d15609ba2a
[RLlib] PyTorch version of ARS (Augmented Random Search). ( #8106 )
...
This PR implements a PyTorch version of RLlib's ARS algorithm using RLlib's functional algo builder API. It also adds a regression test for ARS (torch) on CartPole.
2020-04-21 09:47:52 +02:00
Sven Mika
3812bfedda
[RLlib] PyTorch version of ES (Evolution Strategies). ( #8104 )
...
PyTorch version of Evolution Strategies (ES) Algo.
2020-04-20 21:47:28 +02:00
Sven Mika
d6cb7d865e
[RLlib] Torch DQN (APEX) TD-Error/prio. replay fixes. ( #8082 )
...
PyTorch APEX_DQN with Prioritized Replay enabled would not work properly due to the td_error not being retrievable by the AsyncReplayOptimizer.
2020-04-20 10:03:25 +02:00
Sven Mika
f7e4dae852
[RLlib] DQN and SAC Atari benchmark fixes. ( #7962 )
...
* Add Atari SAC-discrete (learning MsPacman in 40k ts up to 780 rewards).
* SAC loss function test case fix.
2020-04-17 08:49:15 +02:00
Sven Mika
d0fab84e4d
[RLlib] DDPG PyTorch version. ( #7953 )
...
The DDPG/TD3 algorithms currently do not have a PyTorch implementation. This PR adds PyTorch support for DDPG/TD3 to RLlib.
This PR:
- Depends on the re-factor PR for DDPG (Functional Algorithm API).
- Adds learning regression tests for the PyTorch version of DDPG and a DDPG (torch)
- Updates the documentation to reflect that DDPG and TD3 now support PyTorch.
* Learning Pendulum-v0 on torch version (same config as tf). Wall time a little slower (~20% than tf).
* Fix GPU target model problem.
2020-04-16 10:20:01 +02:00
Sven Mika
428516056a
[RLlib] SAC Torch (incl. Atari learning) ( #7984 )
...
* Policy-classes cleanup and torch/tf unification.
- Make Policy abstract.
- Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch).
- Move some methods and vars to base Policy
(from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more.
* Fix `clip_action` import from Policy (should probably be moved into utils altogether).
* - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy).
- Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces).
* Add `config` to c'tor call to TFPolicy.
* Add missing `config` to c'tor call to TFPolicy in marvil_policy.py.
* Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract).
* Fix LINT errors in Policy classes.
* Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py.
* policy.py LINT errors.
* Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases).
* policy.py
- Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented).
- Fix docstring of `num_state_tensors`.
* Make QMIX torch Policy a child of TorchPolicy (instead of Policy).
* QMixPolicy add empty implementations of abstract Policy methods.
* Store Policy's config in self.config in base Policy c'tor.
* - Make only compute_actions in base Policy's an abstractmethod and provide pass
implementation to all other methods if not defined.
- Fix state_batches=None (most Policies don't have internal states).
* Cartpole tf learning.
* Cartpole tf AND torch learning (in ~ same ts).
* Cartpole tf AND torch learning (in ~ same ts). 2
* Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3
* Cartpole tf AND torch learning (in ~ same ts). 4
* Cartpole tf AND torch learning (in ~ same ts). 5
* Cartpole tf AND torch learning (in ~ same ts). 6
* Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning.
* WIP.
* WIP.
* SAC torch learning Pendulum.
* WIP.
* SAC torch and tf learning Pendulum and Cartpole after cleanup.
* WIP.
* LINT.
* LINT.
* SAC: Move policy.target_model to policy.device as well.
* Fixes and cleanup.
* Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default).
* Fixes and LINT.
* Fixes and LINT.
* Fix and LINT.
* WIP.
* Test fixes and LINT.
* Fixes and LINT.
Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
2020-04-15 13:25:16 +02:00
Sven Mika
c2cb5c2214
[RLlib] MARWIL torch. ( #7836 )
...
* WIP.
* WIP.
* LINT.
* Fix MARWIL so it can run with eager-mode.
* LINT.
2020-04-06 16:38:50 -07:00
Sven Mika
22ccc43670
[RLlib] DQN torch version. ( #7597 )
...
* Fix.
* Rollback.
* WIP.
* WIP.
* WIP.
* WIP.
* WIP.
* WIP.
* WIP.
* WIP.
* Fix.
* Fix.
* Fix.
* Fix.
* Fix.
* WIP.
* WIP.
* Fix.
* Test case fixes.
* Test case fixes and LINT.
* Test case fixes and LINT.
* Rollback.
* WIP.
* WIP.
* Test case fixes.
* Fix.
* Fix.
* Fix.
* Add regression test for DQN w/ param noise.
* Fixes and LINT.
* Fixes and LINT.
* Fixes and LINT.
* Fixes and LINT.
* Fixes and LINT.
* Comment
* Regression test case.
* WIP.
* WIP.
* LINT.
* LINT.
* WIP.
* Fix.
* Fix.
* Fix.
* LINT.
* Fix (SAC does currently not support eager).
* Fix.
* WIP.
* LINT.
* Update rllib/evaluation/sampler.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* Update rllib/evaluation/sampler.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* Update rllib/utils/exploration/exploration.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* Update rllib/utils/exploration/exploration.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* WIP.
* WIP.
* Fix.
* LINT.
* LINT.
* Fix and LINT.
* WIP.
* WIP.
* WIP.
* WIP.
* Fix.
* LINT.
* Fix.
* Fix and LINT.
* Update rllib/utils/exploration/exploration.py
* Update rllib/policy/dynamic_tf_policy.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* Update rllib/policy/dynamic_tf_policy.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* Update rllib/policy/dynamic_tf_policy.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* Fixes.
* WIP.
* LINT.
* Fixes and LINT.
* LINT and fixes.
* LINT.
* Move action_dist back into torch extra_action_out_fn and LINT.
* Working SimpleQ learning cartpole on both torch AND tf.
* Working Rainbow learning cartpole on tf.
* Working Rainbow learning cartpole on tf.
* WIP.
* LINT.
* LINT.
* Update docs and add torch to APEX test.
* LINT.
* Fix.
* LINT.
* Fix.
* Fix.
* Fix and docstrings.
* Fix broken RLlib tests in master.
* Split BAZEL learning tests into cartpole and pendulum (reached the 60min barrier).
* Fix error_outputs option in BAZEL for RLlib regression tests.
* Fix.
* Tune param-noise tests.
* LINT.
* Fix.
* Fix.
* test
* test
* test
* Fix.
* Fix.
* WIP.
* WIP.
* WIP.
* WIP.
* LINT.
* WIP.
Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-04-06 11:56:16 -07:00
Sven Mika
82c2d9faba
[RLlib] Fix broken RLlib tests in master. ( #7894 )
2020-04-05 09:34:23 -07:00
Sven Mika
bb6c675231
[RLlib] Bug fix: Copy is_exploring
placeholder for multi-GPU tower generation. ( #7846 )
2020-04-03 10:44:58 -07:00
Sven Mika
5537fe13b0
[RLlib] Exploration API: ParamNoise Integration into DQN; working example/test cases. ( #7814 )
2020-04-03 10:44:25 -07:00
Eric Liang
dd70720578
[rllib] Rename sample_batch_size => rollout_fragment_length ( #7503 )
...
* bulk rename
* deprecation warn
* update doc
* update fig
* line length
* rename
* make pytest comptaible
* fix test
* fi sys
* rename
* wip
* fix more
* lint
* update svg
* comments
* lint
* fix use of batch steps
2020-03-14 12:05:04 -07:00
Eric Liang
52cf77f5a9
[rllib] SAC no_done_at_end should default to False ( #7594 )
...
* update
* update doc
* stochastic
* cleanu
2020-03-14 11:16:54 -07:00
Sven Mika
bc120730e5
[RLlib] PPO(torch) on CartPole not tuned well enough for consistent learning ( #7556 )
2020-03-11 20:31:27 -07:00
Sven Mika
510c850651
[RLlib] SAC add discrete action support. ( #7320 )
...
* Exploration API (+EpsilonGreedy sub-class).
* Exploration API (+EpsilonGreedy sub-class).
* Cleanup/LINT.
* Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents).
* Add `error` option to deprecation_warning().
* WIP.
* Bug fix: Get exploration-info for tf framework.
Bug fix: Properly deprecate some DQN config keys.
* WIP.
* LINT.
* WIP.
* Split PerWorkerEpsilonGreedy out of EpsilonGreedy.
Docstrings.
* Fix bug in sampler.py in case Policy has self.exploration = None
* Update rllib/agents/dqn/dqn.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* WIP.
* Update rllib/agents/trainer.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* WIP.
* Change requests.
* LINT
* In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set
* Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps).
* Update rllib/evaluation/worker_set.py
Co-Authored-By: Eric Liang <ekhliang@gmail.com>
* Review fixes.
* Fix default value for DQN's exploration spec.
* LINT
* Fix recursion bug (wrong parent c'tor).
* Do not pass timestep to get_exploration_info.
* Update tf_policy.py
* Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs.
* Bug fix tf-action-dist
* DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG).
* Switch off exploration when getting action probs from off-policy-estimator's policy.
* LINT
* Fix test_checkpoint_restore.py.
* Deprecate all SAC exploration (unused) configs.
* Properly use `model.last_output()` everywhere. Instead of `model._last_output`.
* WIP.
* Take out set_epsilon from multi-agent-env test (not needed, decays anyway).
* WIP.
* Trigger re-test (flaky checkpoint-restore test).
* WIP.
* WIP.
* Add test case for deterministic action sampling in PPO.
* bug fix.
* Added deterministic test cases for different Agents.
* Fix problem with TupleActions in dynamic-tf-policy.
* Separate supported_spaces tests so they can be run separately for easier debugging.
* LINT.
* Fix autoregressive_action_dist.py test case.
* Re-test.
* Fix.
* Remove duplicate py_test rule from bazel.
* LINT.
* WIP.
* WIP.
* SAC fix.
* SAC fix.
* WIP.
* WIP.
* WIP.
* FIX 2 examples tests.
* WIP.
* WIP.
* WIP.
* WIP.
* WIP.
* Fix.
* LINT.
* Renamed test file.
* WIP.
* Add unittest.main.
* Make action_dist_class mandatory.
* fix
* FIX.
* WIP.
* WIP.
* Fix.
* Fix.
* Fix explorations test case (contextlib cannot find its own nullcontext??).
* Force torch to be installed for QMIX.
* LINT.
* Fix determine_tests_to_run.py.
* Fix determine_tests_to_run.py.
* WIP
* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).
* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).
* Rename some stuff.
* Rename some stuff.
* WIP.
* update.
* WIP.
* Gumbel Softmax Dist.
* WIP.
* WIP.
* WIP.
* WIP.
* WIP.
* WIP.
* WIP
* WIP.
* WIP.
* Hypertune.
* Hypertune.
* Hypertune.
* Lock-in.
* Cleanup.
* LINT.
* Fix.
* Update rllib/policy/eager_tf_policy.py
Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>
* Update rllib/agents/sac/sac_policy.py
Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>
* Update rllib/agents/sac/sac_policy.py
Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>
* Update rllib/models/tf/tf_action_dist.py
Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>
* Update rllib/models/tf/tf_action_dist.py
Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>
* Fix items from review comments.
* Add dm_tree to RLlib dependencies.
* Add dm_tree to RLlib dependencies.
* Fix DQN test cases ((Torch)Categorical).
* Fix wrong pip install.
Co-authored-by: Eric Liang <ekhliang@gmail.com>
Co-authored-by: Kristian Hartikainen <kristian.hartikainen@gmail.com>
2020-03-06 10:37:12 -08:00
Eric Liang
fddeb6809c
[RLlib] Issue 7401: In eval mode (if evaluation_episodes > 0), agent hangs if Env does not terminate. ( #7448 )
...
* Fix.
* Rollback.
* Fix issue 7421.
* Fix.
2020-03-04 12:58:34 -08:00