diff --git a/test/arrays_test.py b/test/arrays_test.py index 0f9775cda..106d72337 100644 --- a/test/arrays_test.py +++ b/test/arrays_test.py @@ -75,34 +75,25 @@ class ArraysDistTest(unittest.TestCase): services.start_singlenode_cluster(return_drivers=False, num_objstores=2, num_workers_per_objstore=5, worker_path=worker_path) x = da.zeros([9, 25, 51], "float") - y = da.assemble(x) - self.assertTrue(np.alltrue(ray.pull(y) == np.zeros([9, 25, 51]))) + self.assertTrue(np.alltrue(ray.pull(da.assemble(x)) == np.zeros([9, 25, 51]))) x = da.ones([11, 25, 49], dtype_name="float") - y = da.assemble(x) - self.assertTrue(np.alltrue(ray.pull(y) == np.ones([11, 25, 49]))) + self.assertTrue(np.alltrue(ray.pull(da.assemble(x)) == np.ones([11, 25, 49]))) x = da.random.normal([11, 25, 49]) y = da.copy(x) - z = da.assemble(x) - w = da.assemble(y) - self.assertTrue(np.alltrue(ray.pull(z) == ray.pull(w))) + self.assertTrue(np.alltrue(ray.pull(da.assemble(x)) == ray.pull(da.assemble(y)))) x = da.eye(25, dtype_name="float") - y = da.assemble(x) - self.assertTrue(np.alltrue(ray.pull(y) == np.eye(25))) + self.assertTrue(np.alltrue(ray.pull(da.assemble(x)) == np.eye(25))) x = da.random.normal([25, 49]) y = da.triu(x) - z = da.assemble(y) - w = da.assemble(x) - self.assertTrue(np.alltrue(ray.pull(z) == np.triu(ray.pull(w)))) + self.assertTrue(np.alltrue(ray.pull(da.assemble(y)) == np.triu(ray.pull(da.assemble(x))))) x = da.random.normal([25, 49]) y = da.tril(x) - z = da.assemble(y) - w = da.assemble(x) - self.assertTrue(np.alltrue(ray.pull(z) == np.tril(ray.pull(w)))) + self.assertTrue(np.alltrue(ray.pull(da.assemble(y)) == np.tril(ray.pull(da.assemble(x))))) x = da.random.normal([25, 49]) y = da.random.normal([49, 18]) @@ -117,35 +108,25 @@ class ArraysDistTest(unittest.TestCase): x = da.random.normal([23, 42]) y = da.random.normal([23, 42]) z = da.add(x, y) - z_full = da.assemble(z) - x_full = da.assemble(x) - y_full = da.assemble(y) - self.assertTrue(np.allclose(ray.pull(z_full), ray.pull(x_full) + ray.pull(y_full))) + self.assertTrue(np.allclose(ray.pull(da.assemble(z)), ray.pull(da.assemble(x)) + ray.pull(da.assemble(y)))) # test subtract x = da.random.normal([33, 40]) y = da.random.normal([33, 40]) z = da.subtract(x, y) - z_full = da.assemble(z) - x_full = da.assemble(x) - y_full = da.assemble(y) - self.assertTrue(np.allclose(ray.pull(z_full), ray.pull(x_full) - ray.pull(y_full))) + self.assertTrue(np.allclose(ray.pull(da.assemble(z)), ray.pull(da.assemble(x)) - ray.pull(da.assemble(y)))) # test transpose x = da.random.normal([234, 432]) y = da.transpose(x) - x_full = da.assemble(x) - y_full = da.assemble(y) - self.assertTrue(np.alltrue(ray.pull(x_full).T == ray.pull(y_full))) + self.assertTrue(np.alltrue(ray.pull(da.assemble(x)).T == ray.pull(da.assemble(y)))) # test numpy_to_dist x = da.random.normal([23, 45]) y = da.assemble(x) z = da.numpy_to_dist(y) w = da.assemble(z) - x_full = da.assemble(x) - z_full = da.assemble(z) - self.assertTrue(np.alltrue(ray.pull(x_full) == ray.pull(z_full))) + self.assertTrue(np.alltrue(ray.pull(da.assemble(x)) == ray.pull(da.assemble(z)))) self.assertTrue(np.alltrue(ray.pull(y) == ray.pull(w))) # test da.tsqr @@ -153,10 +134,8 @@ class ArraysDistTest(unittest.TestCase): x = da.random.normal(shape) K = min(shape) q, r = da.linalg.tsqr(x) - x_full = da.assemble(x) - x_val = ray.pull(x_full) - q_full = da.assemble(q) - q_val = ray.pull(q_full) + x_val = ray.pull(da.assemble(x)) + q_val = ray.pull(da.assemble(q)) r_val = ray.pull(r) self.assertTrue(r_val.shape == (K, shape[1])) self.assertTrue(np.alltrue(r_val == np.triu(r_val))) @@ -173,8 +152,7 @@ class ArraysDistTest(unittest.TestCase): l, u, s = da.linalg.modified_lu(da.numpy_to_dist(q)) q_val = ray.pull(q) r_val = ray.pull(r) - l_full = da.assemble(l) - l_val = ray.pull(l_full) + l_val = ray.pull(da.assemble(l)) u_val = ray.pull(u) s_val = ray.pull(s) s_mat = np.zeros((d1, d2)) @@ -192,10 +170,8 @@ class ArraysDistTest(unittest.TestCase): print "testing dist_tsqr_hr with d1 = " + str(d1) + ", d2 = " + str(d2) a = da.random.normal([d1, d2]) y, t, y_top, r = da.linalg.tsqr_hr(a) - a_full = da.assemble(a) - a_val = ray.pull(a_full) - y_full = da.assemble(y) - y_val = ray.pull(y_full) + a_val = ray.pull(da.assemble(a)) + y_val = ray.pull(da.assemble(y)) t_val = ray.pull(t) y_top_val = ray.pull(y_top) r_val = ray.pull(r) @@ -213,13 +189,9 @@ class ArraysDistTest(unittest.TestCase): a = da.random.normal([d1, d2]) K = min(d1, d2) q, r = da.linalg.qr(a) - a_full = da.assemble(a) - q_full = da.assemble(q) - r_full = da.assemble(r) - a_val = ray.pull(a_full) - q_val = ray.pull(q_full) - r_val = ray.pull(r_full) - + a_val = ray.pull(da.assemble(a)) + q_val = ray.pull(da.assemble(q)) + r_val = ray.pull(da.assemble(r)) self.assertTrue(q_val.shape == (d1, K)) self.assertTrue(r_val.shape == (K, d2)) self.assertTrue(np.allclose(np.dot(q_val.T, q_val), np.eye(K)))