[RLlib] Bandits (torch) Policy sub-class. (#25254)

Co-authored-by: Steven Morad <smorad@anyscale.com>
This commit is contained in:
Steven Morad 2022-06-02 06:16:51 -07:00 committed by GitHub
parent 6fe91885b0
commit f781622f86
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -1,8 +1,8 @@
import logging
import time
from gym import spaces
from ray.rllib.algorithms.bandit.bandit_tf_policy import validate_spaces
import ray
from ray.rllib.algorithms.bandit.bandit_torch_model import (
DiscreteLinearModelThompsonSampling,
DiscreteLinearModelUCB,
@ -12,18 +12,72 @@ from ray.rllib.algorithms.bandit.bandit_torch_model import (
)
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.models.modelv2 import restore_original_dimensions
from ray.rllib.policy.policy_template import build_policy_class
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_policy import TorchPolicy
from ray.rllib.utils.annotations import override
from ray.rllib.utils.metrics.learner_info import LEARNER_STATS_KEY
from ray.util.debug import log_once
from ray.rllib.policy.torch_policy_v2 import TorchPolicyV2
logger = logging.getLogger(__name__)
class BanditPolicyOverrides:
@override(TorchPolicy)
class BanditTorchPolicy(TorchPolicyV2):
def __init__(self, observation_space, action_space, config):
config = dict(ray.rllib.algorithms.bandit.bandit.DEFAULT_CONFIG, **config)
TorchPolicyV2.__init__(
self,
observation_space,
action_space,
config,
max_seq_len=config["model"]["max_seq_len"],
)
self.regrets = []
@override(TorchPolicyV2)
def make_model_and_action_dist(self):
dist_class, logit_dim = ModelCatalog.get_action_dist(
self.action_space, self.config["model"], framework="torch"
)
model_cls = DiscreteLinearModel
if hasattr(self.observation_space, "original_space"):
original_space = self.observation_space.original_space
else:
original_space = self.observation_space
exploration_config = self.config.get("exploration_config")
# Model is dependent on exploration strategy because of its implicitness
# TODO: Have a separate model catalogue for bandits
if exploration_config:
if exploration_config["type"] == "ThompsonSampling":
if isinstance(original_space, spaces.Dict):
assert (
"item" in original_space.spaces
), "Cannot find 'item' key in observation space"
model_cls = ParametricLinearModelThompsonSampling
else:
model_cls = DiscreteLinearModelThompsonSampling
elif exploration_config["type"] == "UpperConfidenceBound":
if isinstance(original_space, spaces.Dict):
assert (
"item" in original_space.spaces
), "Cannot find 'item' key in observation space"
model_cls = ParametricLinearModelUCB
else:
model_cls = DiscreteLinearModelUCB
model = model_cls(
self.observation_space,
self.action_space,
logit_dim,
self.config["model"],
name="LinearModel",
)
return model, dist_class
@override(TorchPolicyV2)
def learn_on_batch(self, postprocessed_batch):
train_batch = self._lazy_tensor_dict(postprocessed_batch)
unflattened_obs = restore_original_dimensions(
@ -52,58 +106,3 @@ class BanditPolicyOverrides:
)
info["update_latency"] = time.time() - start
return {LEARNER_STATS_KEY: info}
def make_model_and_action_dist(policy, obs_space, action_space, config):
dist_class, logit_dim = ModelCatalog.get_action_dist(
action_space, config["model"], framework="torch"
)
model_cls = DiscreteLinearModel
if hasattr(obs_space, "original_space"):
original_space = obs_space.original_space
else:
original_space = obs_space
exploration_config = config.get("exploration_config")
# Model is dependent on exploration strategy because of its implicitness
# TODO: Have a separate model catalogue for bandits
if exploration_config:
if exploration_config["type"] == "ThompsonSampling":
if isinstance(original_space, spaces.Dict):
assert (
"item" in original_space.spaces
), "Cannot find 'item' key in observation space"
model_cls = ParametricLinearModelThompsonSampling
else:
model_cls = DiscreteLinearModelThompsonSampling
elif exploration_config["type"] == "UpperConfidenceBound":
if isinstance(original_space, spaces.Dict):
assert (
"item" in original_space.spaces
), "Cannot find 'item' key in observation space"
model_cls = ParametricLinearModelUCB
else:
model_cls = DiscreteLinearModelUCB
model = model_cls(
obs_space, action_space, logit_dim, config["model"], name="LinearModel"
)
return model, dist_class
def init_cum_regret(policy, *args):
policy.regrets = []
BanditTorchPolicy = build_policy_class(
name="BanditTorchPolicy",
framework="torch",
validate_spaces=validate_spaces,
loss_fn=None,
after_init=init_cum_regret,
make_model_and_action_dist=make_model_and_action_dist,
optimizer_fn=lambda policy, config: None, # Pass a dummy optimizer
mixins=[BanditPolicyOverrides],
)