mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
Remove memory quota enforcement from actors (#11480)
* wip * fix * deprecate
This commit is contained in:
parent
8c82369cad
commit
e8c77e2847
5 changed files with 1 additions and 81 deletions
|
@ -249,8 +249,6 @@ In the above example, the memory quota is specified statically by the decorator,
|
|||
# override the memory quota to 1GiB when creating the actor
|
||||
SomeActor.options(memory=1000 * 1024 * 1024).remote(a=1, b=2)
|
||||
|
||||
**Enforcement**: If an actor exceeds its memory quota, calls to it will throw ``RayOutOfMemoryError`` and it may be killed. Memory quota is currently enforced on a best-effort basis for actors only (but quota is taken into account during scheduling in all cases).
|
||||
|
||||
Questions or Issues?
|
||||
--------------------
|
||||
|
||||
|
|
|
@ -397,11 +397,6 @@ cdef execute_task(
|
|||
next_title = f"ray::{class_name}"
|
||||
pid = os.getpid()
|
||||
worker_name = f"ray_{class_name}_{pid}"
|
||||
if c_resources.find(b"memory") != c_resources.end():
|
||||
worker.memory_monitor.set_heap_limit(
|
||||
worker_name,
|
||||
ray_constants.from_memory_units(
|
||||
dereference(c_resources.find(b"memory")).second))
|
||||
if c_resources.find(b"object_store_memory") != c_resources.end():
|
||||
worker.core_worker.set_object_store_client_options(
|
||||
worker_name,
|
||||
|
|
|
@ -78,8 +78,6 @@ class MemoryMonitor:
|
|||
# throttle this check at most once a second or so.
|
||||
self.check_interval = check_interval
|
||||
self.last_checked = 0
|
||||
self.heap_limit = None
|
||||
self.worker_name = None
|
||||
try:
|
||||
self.error_threshold = float(
|
||||
os.getenv("RAY_MEMORY_MONITOR_ERROR_THRESHOLD"))
|
||||
|
@ -98,10 +96,6 @@ class MemoryMonitor:
|
|||
"`pip install psutil` (or ray[debug]) to enable "
|
||||
"debugging of memory-related crashes.")
|
||||
|
||||
def set_heap_limit(self, worker_name, limit_bytes):
|
||||
self.heap_limit = limit_bytes
|
||||
self.worker_name = worker_name
|
||||
|
||||
def get_memory_usage(self):
|
||||
psutil_mem = psutil.virtual_memory()
|
||||
total_gb = psutil_mem.total / (1024**3)
|
||||
|
@ -140,17 +134,3 @@ class MemoryMonitor:
|
|||
self.error_threshold))
|
||||
else:
|
||||
logger.debug(f"Memory usage is {used_gb} / {total_gb}")
|
||||
|
||||
if self.heap_limit:
|
||||
mem_info = psutil.Process(os.getpid()).memory_info()
|
||||
heap_size = get_rss(mem_info)
|
||||
if heap_size > self.heap_limit:
|
||||
raise RayOutOfMemoryError(
|
||||
"Heap memory usage for {} is {} / {} GiB limit".format(
|
||||
self.worker_name, round(heap_size / (1024**3), 4),
|
||||
round(self.heap_limit / (1024**3), 4)))
|
||||
elif heap_size > 0.8 * self.heap_limit:
|
||||
logger.warning(
|
||||
"Heap memory usage for {} is {} / {} GiB limit".format(
|
||||
self.worker_name, round(heap_size / (1024**3), 4),
|
||||
round(self.heap_limit / (1024**3), 4)))
|
||||
|
|
|
@ -68,26 +68,6 @@ class TestMemoryScheduling(unittest.TestCase):
|
|||
finally:
|
||||
ray.shutdown()
|
||||
|
||||
def testTuneDriverHeapLimit(self):
|
||||
try:
|
||||
ray.init(num_cpus=4, _memory=100 * MB)
|
||||
_register_all()
|
||||
result = tune.run(
|
||||
"PG",
|
||||
stop={"timesteps_total": 10000},
|
||||
config={
|
||||
"env": "CartPole-v0",
|
||||
"memory": 100 * 1024 * 1024, # too little
|
||||
"framework": "tf",
|
||||
},
|
||||
raise_on_failed_trial=False)
|
||||
self.assertEqual(result.trials[0].status, "ERROR")
|
||||
self.assertTrue(
|
||||
"RayOutOfMemoryError: Heap memory usage for ray_PG_" in
|
||||
result.trials[0].error_msg)
|
||||
finally:
|
||||
ray.shutdown()
|
||||
|
||||
def testTuneDriverStoreLimit(self):
|
||||
try:
|
||||
ray.init(
|
||||
|
@ -111,27 +91,6 @@ class TestMemoryScheduling(unittest.TestCase):
|
|||
finally:
|
||||
ray.shutdown()
|
||||
|
||||
def testTuneWorkerHeapLimit(self):
|
||||
try:
|
||||
ray.init(num_cpus=4, _memory=100 * MB)
|
||||
_register_all()
|
||||
result = tune.run(
|
||||
"PG",
|
||||
stop={"timesteps_total": 10000},
|
||||
config={
|
||||
"env": "CartPole-v0",
|
||||
"num_workers": 1,
|
||||
"memory_per_worker": 100 * 1024 * 1024, # too little
|
||||
"framework": "tf",
|
||||
},
|
||||
raise_on_failed_trial=False)
|
||||
self.assertEqual(result.trials[0].status, "ERROR")
|
||||
self.assertTrue(
|
||||
"RayOutOfMemoryError: Heap memory usage for ray_Rollout" in
|
||||
result.trials[0].error_msg)
|
||||
finally:
|
||||
ray.shutdown()
|
||||
|
||||
def testTuneWorkerStoreLimit(self):
|
||||
try:
|
||||
ray.init(
|
||||
|
|
|
@ -293,22 +293,10 @@ COMMON_CONFIG: TrainerConfigDict = {
|
|||
# Number of CPUs to allocate for the trainer. Note: this only takes effect
|
||||
# when running in Tune. Otherwise, the trainer runs in the main program.
|
||||
"num_cpus_for_driver": 1,
|
||||
# You can set these memory quotas to tell Ray to reserve memory for your
|
||||
# training run. This guarantees predictable execution, but the tradeoff is
|
||||
# if your workload exceeeds the memory quota it will fail.
|
||||
# Heap memory to reserve for the trainer process (0 for unlimited). This
|
||||
# can be large if your are using large train batches, replay buffers, etc.
|
||||
# Deprecated.
|
||||
"memory": 0,
|
||||
# Object store memory to reserve for the trainer process. Being large
|
||||
# enough to fit a few copies of the model weights should be sufficient.
|
||||
# This is enabled by default since models are typically quite small.
|
||||
"object_store_memory": 0,
|
||||
# Heap memory to reserve for each worker. Should generally be small unless
|
||||
# your environment is very heavyweight.
|
||||
"memory_per_worker": 0,
|
||||
# Object store memory to reserve for each worker. This only needs to be
|
||||
# large enough to fit a few sample batches at a time. This is enabled
|
||||
# by default since it almost never needs to be larger than ~200MB.
|
||||
"object_store_memory_per_worker": 0,
|
||||
|
||||
# === Offline Datasets ===
|
||||
|
|
Loading…
Add table
Reference in a new issue