Remove memory quota enforcement from actors (#11480)

* wip

* fix

* deprecate
This commit is contained in:
Eric Liang 2020-10-21 14:29:03 -07:00 committed by GitHub
parent 8c82369cad
commit e8c77e2847
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 1 additions and 81 deletions

View file

@ -249,8 +249,6 @@ In the above example, the memory quota is specified statically by the decorator,
# override the memory quota to 1GiB when creating the actor # override the memory quota to 1GiB when creating the actor
SomeActor.options(memory=1000 * 1024 * 1024).remote(a=1, b=2) SomeActor.options(memory=1000 * 1024 * 1024).remote(a=1, b=2)
**Enforcement**: If an actor exceeds its memory quota, calls to it will throw ``RayOutOfMemoryError`` and it may be killed. Memory quota is currently enforced on a best-effort basis for actors only (but quota is taken into account during scheduling in all cases).
Questions or Issues? Questions or Issues?
-------------------- --------------------

View file

@ -397,11 +397,6 @@ cdef execute_task(
next_title = f"ray::{class_name}" next_title = f"ray::{class_name}"
pid = os.getpid() pid = os.getpid()
worker_name = f"ray_{class_name}_{pid}" worker_name = f"ray_{class_name}_{pid}"
if c_resources.find(b"memory") != c_resources.end():
worker.memory_monitor.set_heap_limit(
worker_name,
ray_constants.from_memory_units(
dereference(c_resources.find(b"memory")).second))
if c_resources.find(b"object_store_memory") != c_resources.end(): if c_resources.find(b"object_store_memory") != c_resources.end():
worker.core_worker.set_object_store_client_options( worker.core_worker.set_object_store_client_options(
worker_name, worker_name,

View file

@ -78,8 +78,6 @@ class MemoryMonitor:
# throttle this check at most once a second or so. # throttle this check at most once a second or so.
self.check_interval = check_interval self.check_interval = check_interval
self.last_checked = 0 self.last_checked = 0
self.heap_limit = None
self.worker_name = None
try: try:
self.error_threshold = float( self.error_threshold = float(
os.getenv("RAY_MEMORY_MONITOR_ERROR_THRESHOLD")) os.getenv("RAY_MEMORY_MONITOR_ERROR_THRESHOLD"))
@ -98,10 +96,6 @@ class MemoryMonitor:
"`pip install psutil` (or ray[debug]) to enable " "`pip install psutil` (or ray[debug]) to enable "
"debugging of memory-related crashes.") "debugging of memory-related crashes.")
def set_heap_limit(self, worker_name, limit_bytes):
self.heap_limit = limit_bytes
self.worker_name = worker_name
def get_memory_usage(self): def get_memory_usage(self):
psutil_mem = psutil.virtual_memory() psutil_mem = psutil.virtual_memory()
total_gb = psutil_mem.total / (1024**3) total_gb = psutil_mem.total / (1024**3)
@ -140,17 +134,3 @@ class MemoryMonitor:
self.error_threshold)) self.error_threshold))
else: else:
logger.debug(f"Memory usage is {used_gb} / {total_gb}") logger.debug(f"Memory usage is {used_gb} / {total_gb}")
if self.heap_limit:
mem_info = psutil.Process(os.getpid()).memory_info()
heap_size = get_rss(mem_info)
if heap_size > self.heap_limit:
raise RayOutOfMemoryError(
"Heap memory usage for {} is {} / {} GiB limit".format(
self.worker_name, round(heap_size / (1024**3), 4),
round(self.heap_limit / (1024**3), 4)))
elif heap_size > 0.8 * self.heap_limit:
logger.warning(
"Heap memory usage for {} is {} / {} GiB limit".format(
self.worker_name, round(heap_size / (1024**3), 4),
round(self.heap_limit / (1024**3), 4)))

View file

@ -68,26 +68,6 @@ class TestMemoryScheduling(unittest.TestCase):
finally: finally:
ray.shutdown() ray.shutdown()
def testTuneDriverHeapLimit(self):
try:
ray.init(num_cpus=4, _memory=100 * MB)
_register_all()
result = tune.run(
"PG",
stop={"timesteps_total": 10000},
config={
"env": "CartPole-v0",
"memory": 100 * 1024 * 1024, # too little
"framework": "tf",
},
raise_on_failed_trial=False)
self.assertEqual(result.trials[0].status, "ERROR")
self.assertTrue(
"RayOutOfMemoryError: Heap memory usage for ray_PG_" in
result.trials[0].error_msg)
finally:
ray.shutdown()
def testTuneDriverStoreLimit(self): def testTuneDriverStoreLimit(self):
try: try:
ray.init( ray.init(
@ -111,27 +91,6 @@ class TestMemoryScheduling(unittest.TestCase):
finally: finally:
ray.shutdown() ray.shutdown()
def testTuneWorkerHeapLimit(self):
try:
ray.init(num_cpus=4, _memory=100 * MB)
_register_all()
result = tune.run(
"PG",
stop={"timesteps_total": 10000},
config={
"env": "CartPole-v0",
"num_workers": 1,
"memory_per_worker": 100 * 1024 * 1024, # too little
"framework": "tf",
},
raise_on_failed_trial=False)
self.assertEqual(result.trials[0].status, "ERROR")
self.assertTrue(
"RayOutOfMemoryError: Heap memory usage for ray_Rollout" in
result.trials[0].error_msg)
finally:
ray.shutdown()
def testTuneWorkerStoreLimit(self): def testTuneWorkerStoreLimit(self):
try: try:
ray.init( ray.init(

View file

@ -293,22 +293,10 @@ COMMON_CONFIG: TrainerConfigDict = {
# Number of CPUs to allocate for the trainer. Note: this only takes effect # Number of CPUs to allocate for the trainer. Note: this only takes effect
# when running in Tune. Otherwise, the trainer runs in the main program. # when running in Tune. Otherwise, the trainer runs in the main program.
"num_cpus_for_driver": 1, "num_cpus_for_driver": 1,
# You can set these memory quotas to tell Ray to reserve memory for your # Deprecated.
# training run. This guarantees predictable execution, but the tradeoff is
# if your workload exceeeds the memory quota it will fail.
# Heap memory to reserve for the trainer process (0 for unlimited). This
# can be large if your are using large train batches, replay buffers, etc.
"memory": 0, "memory": 0,
# Object store memory to reserve for the trainer process. Being large
# enough to fit a few copies of the model weights should be sufficient.
# This is enabled by default since models are typically quite small.
"object_store_memory": 0, "object_store_memory": 0,
# Heap memory to reserve for each worker. Should generally be small unless
# your environment is very heavyweight.
"memory_per_worker": 0, "memory_per_worker": 0,
# Object store memory to reserve for each worker. This only needs to be
# large enough to fit a few sample batches at a time. This is enabled
# by default since it almost never needs to be larger than ~200MB.
"object_store_memory_per_worker": 0, "object_store_memory_per_worker": 0,
# === Offline Datasets === # === Offline Datasets ===