pong rl code

This commit is contained in:
Wapaul1 2016-06-22 06:34:57 +00:00
parent 0e5feecd65
commit d70928300f
4 changed files with 171 additions and 0 deletions

View file

@ -0,0 +1,52 @@
# This code is copied and adapted from Andrej Karpathy's code for learning to
# play Pong https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4ea32c5.
import numpy as np
import cPickle as pickle
import gym
import ray
import ray.services as services
import os
import functions
worker_dir = os.path.dirname(os.path.abspath(__file__))
worker_path = os.path.join(worker_dir, "worker.py")
services.start_singlenode_cluster(return_drivers=False, num_objstores=1, num_workers_per_objstore=10, worker_path=worker_path)
# hyperparameters
H = 200 # number of hidden layer neurons
batch_size = 10 # every how many episodes to do a param update?
learning_rate = 1e-4
decay_rate = 0.99 # decay factor for RMSProp leaky sum of grad^2
resume = False # resume from previous checkpoint?
running_reward = None
batch_num = 1
D = functions.D # input dimensionality: 80x80 grid
if resume:
model = pickle.load(open("save.p", "rb"))
else:
model = {}
model["W1"] = np.random.randn(H, D) / np.sqrt(D) # "Xavier" initialization
model["W2"] = np.random.randn(H) / np.sqrt(H)
grad_buffer = {k: np.zeros_like(v) for k, v in model.iteritems()} # update buffers that add up gradients over a batch
rmsprop_cache = {k: np.zeros_like(v) for k, v in model.iteritems()} # rmsprop memory
while True:
modelref = ray.push(model)
grads = []
for i in range(batch_size):
grads.append(functions.compgrad(modelref))
for i in range(batch_size):
grad = ray.pull(grads[i])
for k in model: grad_buffer[k] += grad[0][k] # accumulate grad over batch
running_reward = grad[1] if running_reward is None else running_reward * 0.99 + grad[1] * 0.01
print "Batch {}. episode reward total was {}. running mean: {}".format(batch_num, grad[1], running_reward)
for k, v in model.iteritems():
g = grad_buffer[k] # gradient
rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g ** 2
model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
batch_num += 1
if batch_num % 10 == 0: pickle.dump(model, open("save.p", "wb"))

View file

@ -0,0 +1,85 @@
# This code is copied and adapted from Andrej Karpathy's code for learning to
# play Pong https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4ea32c5.
import ray
import numpy as np
import gym
env = gym.make("Pong-v0")
D = 80 * 80
gamma = 0.99 # discount factor for reward
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x)) # sigmoid "squashing" function to interval [0,1]
def preprocess(I):
"""preprocess 210x160x3 uint8 frame into 6400 (80x80) 1D float vector"""
I = I[35:195] # crop
I = I[::2,::2,0] # downsample by factor of 2
I[I == 144] = 0 # erase background (background type 1)
I[I == 109] = 0 # erase background (background type 2)
I[I != 0] = 1 # everything else (paddles, ball) just set to 1
return I.astype(np.float).ravel()
def discount_rewards(r):
"""take 1D float array of rewards and compute discounted reward"""
discounted_r = np.zeros_like(r)
running_add = 0
for t in reversed(xrange(0, r.size)):
if r[t] != 0: running_add = 0 # reset the sum, since this was a game boundary (pong specific!)
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
def policy_forward(x, model):
h = np.dot(model["W1"], x)
h[h < 0] = 0 # ReLU nonlinearity
logp = np.dot(model["W2"], h)
p = sigmoid(logp)
return p, h # return probability of taking action 2, and hidden state
def policy_backward(eph, epx, epdlogp, model):
"""backward pass. (eph is array of intermediate hidden states)"""
dW2 = np.dot(eph.T, epdlogp).ravel()
dh = np.outer(epdlogp, model["W2"])
dh[eph <= 0] = 0 # backpro prelu
dW1 = np.dot(dh.T, epx)
return {"W1": dW1, "W2": dW2}
@ray.remote([dict], [tuple])
def compgrad(model):
observation = env.reset()
prev_x = None # used in computing the difference frame
xs, hs, dlogps, drs = [], [], [], []
reward_sum = 0
done = False
while not done:
cur_x = preprocess(observation)
x = cur_x - prev_x if prev_x is not None else np.zeros(D)
prev_x = cur_x
aprob, h = policy_forward(x,model)
action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
xs.append(x) # observation
hs.append(h) # hidden state
y = 1 if action == 2 else 0 # a "fake label"
dlogps.append(y - aprob) # grad that encourages the action that was taken to be taken (see http://cs231n.github.io/neural-networks-2/#losses if confused)
observation, reward, done, info = env.step(action)
reward_sum += reward
drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
epx = np.vstack(xs)
eph = np.vstack(hs)
epdlogp = np.vstack(dlogps)
epr = np.vstack(drs)
xs, hs, dlogps, drs = [], [], [], [] # reset array memory
# compute the discounted reward backwards through time
discounted_epr = discount_rewards(epr)
# standardize the rewards to be unit normal (helps control the gradient estimator variance)
discounted_epr -= np.mean(discounted_epr)
discounted_epr /= np.std(discounted_epr)
epdlogp *= discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
return (policy_backward(eph, epx, epdlogp, model), reward_sum)

View file

@ -0,0 +1,17 @@
import matplotlib
from matplotlib import pyplot as plt
import pickle
import numpy as np
matplotlib.use("Agg")
logs = pickle.load(open("logs_rl_original.p", "rb"))
times_og = range(1, (len(logs) + 1))
reward_og = map(lambda x:x[2], logs)
plt.plot(times_og, reward_og)
plt.savefig("original_batchnum_graph")
logs = pickle.load(open("logs_rl_ray.p", "rb"))
times_ray = range(1, (len(logs) + 1))
reward_ray = map(lambda x: x[2], logs)
plt.plot(times_ray, reward_ray)
plt.savefig("rl_pong_graph")

View file

@ -0,0 +1,17 @@
import argparse
import ray
import ray.worker as worker
import gym
import functions
parser = argparse.ArgumentParser(description="Parse addresses for the worker to connect to.")
parser.add_argument("--scheduler-address", default="127.0.0.1:10001", type=str, help="the scheduler's address")
parser.add_argument("--objstore-address", default="127.0.0.1:20001", type=str, help="the objstore's address")
parser.add_argument("--worker-address", default="127.0.0.1:40001", type=str, help="the worker's address")
if __name__ == '__main__':
args = parser.parse_args()
ray.connect(args.scheduler_address, args.objstore_address, args.worker_address)
ray.register_module(functions)
worker.main_loop()