[Docs] RayDP Documentation (#14018)

* .

* done?

* Docs

* Docs

* Update raydp.rst

* Update raydp.rst

Co-authored-by: Alex Wu <alex@anyscale.com>
This commit is contained in:
Alex Wu 2021-02-09 23:05:18 -08:00 committed by GitHub
parent 8ca0a32819
commit ce80ef5aee
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 105 additions and 0 deletions

View file

@ -308,6 +308,7 @@ Papers
modin/index.rst
dask-on-ray.rst
mars-on-ray.rst
raydp.rst
ray-client.rst
.. toctree::

104
doc/source/raydp.rst Normal file
View file

@ -0,0 +1,104 @@
********************
RayDP (Spark on Ray)
********************
RayDP combines your Spark and Ray clusters, making it easy to do large scale
data processing using the PySpark API and seemlessly use that data to train
your models using TensorFlow and PyTorch.
For more information and examples, see the RayDP Github page:
https://github.com/oap_project/raydp
================
Installing RayDP
================
RayDP can be installed from PyPI and supports PySpark 3.0 and 3.1.
.. code-block bash
pip install raydp
.. note::
RayDP requires ray >= 1.2.0
.. note::
In order to run Spark, the head and worker nodes will need Java installed.
========================
Creating a Spark Session
========================
To create a spark session, call ``raydp.init_spark``
For example,
.. code-block:: python
import raydp
spark = raydp.init_spark(
app_name = "example",
num_executors = 10,
executor_cores = 64,
memory_per_executor = "256GB"
)
====================================
Deep Learning with a Spark DataFrame
====================================
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Training a Spark DataFrame with TensorFlow
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``raydp.tf.TFEstimator`` provides an API for training with TensorFlow.
.. code-block:: python
d = [{'age': 17 , 'grade': 12}]
df = spark.createDataFrame(d).collect()
from tensorflow import keras
model = keras.Sequential([])
estimator = raydp.tf.TFEstimator(
model = model,
num_worker = 10,
feature_columns = ["age"],
label_column = ["grade"]
)
estimator.fit_on_spark(df, test_df=None)
tensorflow_model = estimator.get_model()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Training a Spark DataFrame with TensorFlow
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Similarly, ``raydp.torch.TorchEstimator`` provides an API for training with
PyTorch.
.. code-block:: python
d = [{'age': 17 , 'grade': 12}]
df = spark.createDataFrame(d).collect()
import torch
model = torch.nn.Sequential()
estimator = raydp.tf.TFEstimator(
model = model,
num_worker = 10,
feature_columns = ["age"],
label_column = ["grade"]
)
estimator.fit_on_spark(df, test_df=None)
pytorch_model = estimator.get_model()