[docs] Refactor (some of) RLlib training API docs using literalinclude (#24436)

Per the [Ray docs contributing guide](https://docs.ray.io/en/master/ray-contribute/docs.html), code chunks should be in `.py` files and pulled in via `literalinclude` rather than placed directly in `.rst` files. This PR takes a small step in doing this for the RLlib docs, specifically for the training API doc page. 

Note that I had to make some changes to the code itself so that it would run, namely adding missing numpy imports and changing `model.from_batch(...)` to `model(...)` in a couple places.

Co-authored-by: Max Pumperla <max.pumperla@googlemail.com>
This commit is contained in:
Michael (Mike) Gelbart 2022-05-20 01:52:04 -07:00 committed by GitHub
parent 99d25d4d4e
commit 8d6548a74a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 155 additions and 139 deletions

View file

@ -154,6 +154,18 @@ py_test_run_all_subdirectory(
tags = ["exclusive", "team:ml"], tags = ["exclusive", "team:ml"],
) )
# --------------------------------------------------------------------
# Test all doc/source/rllib/doc_code code included in rst/md files.
# --------------------------------------------------------------------
py_test_run_all_subdirectory(
size = "medium",
include = ["source/rllib/doc_code/*.py"],
exclude = [],
extra_srcs = [],
tags = ["exclusive", "team:ml"],
)
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# Test all doc/source/ray-air/doc_code code included in rst/md files. # Test all doc/source/ray-air/doc_code code included in rst/md files.
# -------------------------------------------------------------------- # --------------------------------------------------------------------
@ -166,7 +178,6 @@ py_test_run_all_subdirectory(
tags = ["exclusive", "team:ml"], tags = ["exclusive", "team:ml"],
) )
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# Test all doc/source/ray-overview/doc_test snippets, used on ray.io # Test all doc/source/ray-overview/doc_test snippets, used on ray.io
# -------------------------------------------------------------------- # --------------------------------------------------------------------

View file

@ -0,0 +1,131 @@
# flake8: noqa
# __preprocessing_observations_start__
import gym
env = gym.make("Pong-v0")
# RLlib uses preprocessors to implement transforms such as one-hot encoding
# and flattening of tuple and dict observations.
from ray.rllib.models.preprocessors import get_preprocessor
prep = get_preprocessor(env.observation_space)(env.observation_space)
# <ray.rllib.models.preprocessors.GenericPixelPreprocessor object at 0x7fc4d049de80>
# Observations should be preprocessed prior to feeding into a model
env.reset().shape
# (210, 160, 3)
prep.transform(env.reset()).shape
# (84, 84, 3)
# __preprocessing_observations_end__
# __query_action_dist_start__
# Get a reference to the policy
import numpy as np
from ray.rllib.agents.ppo import PPOTrainer
trainer = PPOTrainer(env="CartPole-v0", config={"framework": "tf2", "num_workers": 0})
policy = trainer.get_policy()
# <ray.rllib.policy.eager_tf_policy.PPOTFPolicy_eager object at 0x7fd020165470>
# Run a forward pass to get model output logits. Note that complex observations
# must be preprocessed as in the above code block.
logits, _ = policy.model({"obs": np.array([[0.1, 0.2, 0.3, 0.4]])})
# (<tf.Tensor: id=1274, shape=(1, 2), dtype=float32, numpy=...>, [])
# Compute action distribution given logits
policy.dist_class
# <class_object 'ray.rllib.models.tf.tf_action_dist.Categorical'>
dist = policy.dist_class(logits, policy.model)
# <ray.rllib.models.tf.tf_action_dist.Categorical object at 0x7fd02301d710>
# Query the distribution for samples, sample logps
dist.sample()
# <tf.Tensor: id=661, shape=(1,), dtype=int64, numpy=..>
dist.logp([1])
# <tf.Tensor: id=1298, shape=(1,), dtype=float32, numpy=...>
# Get the estimated values for the most recent forward pass
policy.model.value_function()
# <tf.Tensor: id=670, shape=(1,), dtype=float32, numpy=...>
policy.model.base_model.summary()
"""
Model: "model"
_____________________________________________________________________
Layer (type) Output Shape Param # Connected to
=====================================================================
observations (InputLayer) [(None, 4)] 0
_____________________________________________________________________
fc_1 (Dense) (None, 256) 1280 observations[0][0]
_____________________________________________________________________
fc_value_1 (Dense) (None, 256) 1280 observations[0][0]
_____________________________________________________________________
fc_2 (Dense) (None, 256) 65792 fc_1[0][0]
_____________________________________________________________________
fc_value_2 (Dense) (None, 256) 65792 fc_value_1[0][0]
_____________________________________________________________________
fc_out (Dense) (None, 2) 514 fc_2[0][0]
_____________________________________________________________________
value_out (Dense) (None, 1) 257 fc_value_2[0][0]
=====================================================================
Total params: 134,915
Trainable params: 134,915
Non-trainable params: 0
_____________________________________________________________________
"""
# __query_action_dist_end__
# __get_q_values_dqn_start__
# Get a reference to the model through the policy
import numpy as np
from ray.rllib.agents.dqn import DQNTrainer
trainer = DQNTrainer(env="CartPole-v0", config={"framework": "tf2"})
model = trainer.get_policy().model
# <ray.rllib.models.catalog.FullyConnectedNetwork_as_DistributionalQModel ...>
# List of all model variables
model.variables()
# Run a forward pass to get base model output. Note that complex observations
# must be preprocessed. An example of preprocessing is examples/saving_experiences.py
model_out = model({"obs": np.array([[0.1, 0.2, 0.3, 0.4]])})
# (<tf.Tensor: id=832, shape=(1, 256), dtype=float32, numpy=...)
# Access the base Keras models (all default models have a base)
model.base_model.summary()
"""
Model: "model"
_______________________________________________________________________
Layer (type) Output Shape Param # Connected to
=======================================================================
observations (InputLayer) [(None, 4)] 0
_______________________________________________________________________
fc_1 (Dense) (None, 256) 1280 observations[0][0]
_______________________________________________________________________
fc_out (Dense) (None, 256) 65792 fc_1[0][0]
_______________________________________________________________________
value_out (Dense) (None, 1) 257 fc_1[0][0]
=======================================================================
Total params: 67,329
Trainable params: 67,329
Non-trainable params: 0
______________________________________________________________________________
"""
# Access the Q value model (specific to DQN)
print(model.get_q_value_distributions(model_out)[0])
# tf.Tensor([[ 0.13023682 -0.36805138]], shape=(1, 2), dtype=float32)
# ^ exact numbers may differ due to randomness
model.q_value_head.summary()
# Access the state value model (specific to DQN)
print(model.get_state_value(model_out))
# tf.Tensor([[0.09381643]], shape=(1, 1), dtype=float32)
# ^ exact number may differ due to randomness
model.state_value_head.summary()
# __get_q_values_dqn_end__

View file

@ -935,151 +935,25 @@ First, install the dependencies:
Then for the code: Then for the code:
.. code-block:: python .. literalinclude:: doc_code/training.py
:language: python
>>> import gym :start-after: __preprocessing_observations_start__
>>> env = gym.make("Pong-v0") :end-before: __preprocessing_observations_end__
# RLlib uses preprocessors to implement transforms such as one-hot encoding
# and flattening of tuple and dict observations.
>>> from ray.rllib.models.preprocessors import get_preprocessor
>>> prep = get_preprocessor(env.observation_space)(env.observation_space)
<ray.rllib.models.preprocessors.GenericPixelPreprocessor object at 0x7fc4d049de80>
# Observations should be preprocessed prior to feeding into a model
>>> env.reset().shape
(210, 160, 3)
>>> prep.transform(env.reset()).shape
(84, 84, 3)
**Example: Querying a policy's action distribution** **Example: Querying a policy's action distribution**
.. code-block:: python .. literalinclude:: doc_code/training.py
:language: python
# Get a reference to the policy :start-after: __query_action_dist_start__
>>> from ray.rllib.agents.ppo import PPOTrainer :end-before: __query_action_dist_end__
>>> trainer = PPOTrainer(env="CartPole-v0", config={"framework": "tf2", "num_workers": 0})
>>> policy = trainer.get_policy()
<ray.rllib.policy.eager_tf_policy.PPOTFPolicy_eager object at 0x7fd020165470>
# Run a forward pass to get model output logits. Note that complex observations
# must be preprocessed as in the above code block.
>>> logits, _ = policy.model.from_batch({"obs": np.array([[0.1, 0.2, 0.3, 0.4]])})
(<tf.Tensor: id=1274, shape=(1, 2), dtype=float32, numpy=...>, [])
# Compute action distribution given logits
>>> policy.dist_class
<class_object 'ray.rllib.models.tf.tf_action_dist.Categorical'>
>>> dist = policy.dist_class(logits, policy.model)
<ray.rllib.models.tf.tf_action_dist.Categorical object at 0x7fd02301d710>
# Query the distribution for samples, sample logps
>>> dist.sample()
<tf.Tensor: id=661, shape=(1,), dtype=int64, numpy=..>
>>> dist.logp([1])
<tf.Tensor: id=1298, shape=(1,), dtype=float32, numpy=...>
# Get the estimated values for the most recent forward pass
>>> policy.model.value_function()
<tf.Tensor: id=670, shape=(1,), dtype=float32, numpy=...>
>>> policy.model.base_model.summary()
Model: "model"
_____________________________________________________________________
Layer (type) Output Shape Param # Connected to
=====================================================================
observations (InputLayer) [(None, 4)] 0
_____________________________________________________________________
fc_1 (Dense) (None, 256) 1280 observations[0][0]
_____________________________________________________________________
fc_value_1 (Dense) (None, 256) 1280 observations[0][0]
_____________________________________________________________________
fc_2 (Dense) (None, 256) 65792 fc_1[0][0]
_____________________________________________________________________
fc_value_2 (Dense) (None, 256) 65792 fc_value_1[0][0]
_____________________________________________________________________
fc_out (Dense) (None, 2) 514 fc_2[0][0]
_____________________________________________________________________
value_out (Dense) (None, 1) 257 fc_value_2[0][0]
=====================================================================
Total params: 134,915
Trainable params: 134,915
Non-trainable params: 0
_____________________________________________________________________
**Example: Getting Q values from a DQN model** **Example: Getting Q values from a DQN model**
.. code-block:: python .. literalinclude:: doc_code/training.py
:language: python
:start-after: __get_q_values_dqn_start__
:end-before: __get_q_values_dqn_end__
# Get a reference to the model through the policy
>>> from ray.rllib.agents.dqn import DQNTrainer
>>> trainer = DQNTrainer(env="CartPole-v0", config={"framework": "tf2"})
>>> model = trainer.get_policy().model
<ray.rllib.models.catalog.FullyConnectedNetwork_as_DistributionalQModel ...>
# List of all model variables
>>> model.variables()
[<tf.Variable 'default_policy/fc_1/kernel:0' shape=(4, 256) dtype=float32>, ...]
# Run a forward pass to get base model output. Note that complex observations
# must be preprocessed. An example of preprocessing is examples/saving_experiences.py
>>> model_out = model.from_batch({"obs": np.array([[0.1, 0.2, 0.3, 0.4]])})
(<tf.Tensor: id=832, shape=(1, 256), dtype=float32, numpy=...)
# Access the base Keras models (all default models have a base)
>>> model.base_model.summary()
Model: "model"
_______________________________________________________________________
Layer (type) Output Shape Param # Connected to
=======================================================================
observations (InputLayer) [(None, 4)] 0
_______________________________________________________________________
fc_1 (Dense) (None, 256) 1280 observations[0][0]
_______________________________________________________________________
fc_out (Dense) (None, 256) 65792 fc_1[0][0]
_______________________________________________________________________
value_out (Dense) (None, 1) 257 fc_1[0][0]
=======================================================================
Total params: 67,329
Trainable params: 67,329
Non-trainable params: 0
______________________________________________________________________________
# Access the Q value model (specific to DQN)
>>> model.get_q_value_distributions(model_out)
[<tf.Tensor: id=891, shape=(1, 2)>, <tf.Tensor: id=896, shape=(1, 2, 1)>]
>>> model.q_value_head.summary()
Model: "model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
model_out (InputLayer) [(None, 256)] 0
_________________________________________________________________
lambda (Lambda) [(None, 2), (None, 2, 1), 66306
=================================================================
Total params: 66,306
Trainable params: 66,306
Non-trainable params: 0
_________________________________________________________________
# Access the state value model (specific to DQN)
>>> model.get_state_value(model_out)
<tf.Tensor: id=913, shape=(1, 1), dtype=float32>
>>> model.state_value_head.summary()
Model: "model_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
model_out (InputLayer) [(None, 256)] 0
_________________________________________________________________
lambda_1 (Lambda) (None, 1) 66049
=================================================================
Total params: 66,049
Trainable params: 66,049
Non-trainable params: 0
_________________________________________________________________
This is especially useful when used with `custom model classes <rllib-models.html>`__. This is especially useful when used with `custom model classes <rllib-models.html>`__.