mirror of
https://github.com/vale981/ray
synced 2025-03-05 18:11:42 -05:00
Add a script for benchmarking performance for Ray developers. (#5472)
This commit is contained in:
parent
99a2f9fab3
commit
851c5b2dae
16 changed files with 287 additions and 606 deletions
|
@ -1,25 +0,0 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
# Show explicitly which commands are currently running.
|
||||
set -ex
|
||||
|
||||
ROOT_DIR=$(cd "$(dirname "${BASH_SOURCE:-$0}")"; pwd)
|
||||
|
||||
pushd "$ROOT_DIR"
|
||||
|
||||
python -m pip install pytest-benchmark
|
||||
|
||||
pip install -U https://ray-wheels.s3-us-west-2.amazonaws.com/latest/ray-0.8.0.dev3-cp36-cp36m-manylinux1_x86_64.whl
|
||||
python -m pytest --benchmark-autosave --benchmark-min-rounds=10 --benchmark-columns="min, max, mean" $ROOT_DIR/../../../python/ray/tests/perf_integration_tests/test_perf_integration.py
|
||||
|
||||
pushd $ROOT_DIR/../../../python
|
||||
python -m pip install -e .
|
||||
popd
|
||||
|
||||
python -m pytest --benchmark-compare --benchmark-min-rounds=10 --benchmark-compare-fail=min:5% --benchmark-columns="min, max, mean" $ROOT_DIR/../../../python/ray/tests/perf_integration_tests/test_perf_integration.py
|
||||
|
||||
# This is how Modin stores the values in an S3 bucket
|
||||
#sha_tag=`git rev-parse --verify --short HEAD`
|
||||
# save the results to S3
|
||||
#aws s3 cp .benchmarks/*/*.json s3://modin-jenkins-result/${sha_tag}-perf-${BUCKET_SUFFIX}/ --acl public-read
|
||||
#rm -rf .benchmarks
|
|
@ -1,27 +0,0 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
# Cause the script to exit if a single command fails.
|
||||
set -e
|
||||
|
||||
# Show explicitly which commands are currently running.
|
||||
set -x
|
||||
|
||||
BUCKET_NAME=ray-integration-testing/ASV
|
||||
COMMIT=$(cat /ray/git-rev)
|
||||
ASV_RESULTS_DIR=/ray/python/ASV_RESULTS
|
||||
pip install awscli
|
||||
|
||||
# Install Ray fork of ASV
|
||||
git clone https://github.com/ray-project/asv.git /tmp/asv/ || true
|
||||
cd /tmp/asv/
|
||||
pip install -e .
|
||||
|
||||
cd /ray/python/
|
||||
asv machine --machine jenkins
|
||||
mkdir $ASV_RESULTS_DIR || true
|
||||
aws s3 cp s3://$BUCKET_NAME/ASV_RESULTS/benchmarks.json $ASV_RESULTS_DIR/benchmarks.json || true
|
||||
|
||||
asv run --show-stderr --python=same --force-record-commit=$COMMIT
|
||||
|
||||
aws s3 cp $ASV_RESULTS_DIR/benchmarks.json s3://$BUCKET_NAME/ASV_RESULTS/benchmarks_$COMMIT.json
|
||||
aws s3 sync $ASV_RESULTS_DIR/ s3://$BUCKET_NAME/ASV_RESULTS/
|
|
@ -1,29 +0,0 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
# Cause the script to exit if a single command fails.
|
||||
set -e
|
||||
|
||||
# Show explicitly which commands are currently running.
|
||||
set -x
|
||||
|
||||
BUCKET_NAME=ray-integration-testing/ASV
|
||||
COMMIT=$(cat /ray/git-rev)
|
||||
RLLIB_RESULTS=RLLIB_RESULTS
|
||||
RLLIB_RESULTS_DIR=/ray/python/ray/rllib/RLLIB_RESULTS
|
||||
pip install awscli
|
||||
|
||||
# Install Ray fork of ASV
|
||||
git clone https://github.com/ray-project/asv.git /tmp/asv/ || true
|
||||
cd /tmp/asv/
|
||||
pip install -e .
|
||||
|
||||
cd /ray/python/ray/rllib/
|
||||
asv machine --machine jenkins
|
||||
mkdir $RLLIB_RESULTS_DIR || true
|
||||
aws s3 cp s3://$BUCKET_NAME/RLLIB_RESULTS/benchmarks.json $RLLIB_RESULTS_DIR/benchmarks.json || true
|
||||
|
||||
./tuned_examples/generate_regression_tests.py
|
||||
asv run --show-stderr --python=same --force-record-commit=$COMMIT
|
||||
|
||||
aws s3 cp $RLLIB_RESULTS_DIR/benchmarks.json s3://$BUCKET_NAME/RLLIB_RESULTS/benchmarks_$COMMIT.json
|
||||
aws s3 sync $RLLIB_RESULTS_DIR/ s3://$BUCKET_NAME/RLLIB_RESULTS/
|
0
ci/jenkins_tests/run_rllib_tests.sh
Normal file → Executable file
0
ci/jenkins_tests/run_rllib_tests.sh
Normal file → Executable file
|
@ -14,10 +14,10 @@ To run the workloads, first edit the config.yaml and replace
|
|||
|
||||
./start_workloads.sh
|
||||
|
||||
This will start one EC2 instance per workload and will start
|
||||
the workloads running (one per instance). Running the ``./start_workloads.sh``
|
||||
script again will clean up any state from the previous runs and will start the
|
||||
workloads again.
|
||||
This will start one EC2 instance per workload and will start the workloads
|
||||
running (one per instance). Running the ``./start_workloads.sh`` script again
|
||||
will clean up any state from the previous runs and will start the workloads
|
||||
again.
|
||||
|
||||
Check Workload Statuses
|
||||
-----------------------
|
||||
|
|
31
ci/performance_tests/README.rst
Normal file
31
ci/performance_tests/README.rst
Normal file
|
@ -0,0 +1,31 @@
|
|||
Performance Tests
|
||||
=================
|
||||
|
||||
This directory contains scripts for running performance benchmarks. These
|
||||
benchmarks are intended to be used by Ray developers to check if a given pull
|
||||
request introduces a performance regression.
|
||||
|
||||
To check if a pull request introduces a performance regression, it is necessary
|
||||
to run these benchmarks on the codebase before and after the change.
|
||||
|
||||
Running the Workloads
|
||||
---------------------
|
||||
|
||||
To run the workload on a single machine, do the following.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
python test_performance.py --num-nodes=3
|
||||
|
||||
This will start simulate a 3 node cluster on your local machine, attach to it,
|
||||
and run the benchmarks. To run the benchmarks on an existing cluster, do the
|
||||
following.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
python test_performance.py --num-nodes=3 --redis-address=<redis-address>
|
||||
|
||||
The ``--num-nodes`` flag must match the number of nodes in the cluster. The
|
||||
nodes in the cluster must be configured with the appropriate resource labels. In
|
||||
particular, the ith node in the cluster must have a resource named ``"i"``
|
||||
with quantity ``500``.
|
252
ci/performance_tests/test_performance.py
Normal file
252
ci/performance_tests/test_performance.py
Normal file
|
@ -0,0 +1,252 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
import ray
|
||||
from ray.tests.cluster_utils import Cluster
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Parse arguments for running the performance tests.")
|
||||
parser.add_argument(
|
||||
"--num-nodes",
|
||||
required=True,
|
||||
type=int,
|
||||
help="The number of nodes to simulate in the cluster.")
|
||||
parser.add_argument(
|
||||
"--skip-object-store-warmup",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="True if the object store should not be warmed up. This could cause "
|
||||
"the benchmarks to appear slower than usual.")
|
||||
parser.add_argument(
|
||||
"--redis-address",
|
||||
required=False,
|
||||
type=str,
|
||||
help="The address of the cluster to connect to. If this is ommitted, then "
|
||||
"a cluster will be started locally (on a single machine).")
|
||||
|
||||
|
||||
def start_local_cluster(num_nodes, object_store_memory):
|
||||
"""Start a local Ray cluster.
|
||||
|
||||
The ith node in the cluster will have a resource named "i".
|
||||
|
||||
Args:
|
||||
num_nodes: The number of nodes to start in the cluster.
|
||||
|
||||
Returns:
|
||||
The cluster object.
|
||||
"""
|
||||
num_redis_shards = 2
|
||||
redis_max_memory = 10**8
|
||||
|
||||
cluster = Cluster()
|
||||
for i in range(num_nodes):
|
||||
cluster.add_node(
|
||||
redis_port=6379 if i == 0 else None,
|
||||
num_redis_shards=num_redis_shards if i == 0 else None,
|
||||
num_cpus=8 if i == 0 else 2,
|
||||
num_gpus=0,
|
||||
resources={str(i): 500},
|
||||
object_store_memory=object_store_memory,
|
||||
redis_max_memory=redis_max_memory)
|
||||
ray.init(redis_address=cluster.redis_address)
|
||||
|
||||
return cluster
|
||||
|
||||
|
||||
def wait_for_and_check_cluster_configuration(num_nodes):
|
||||
"""Check that the cluster's custom resources are properly configured.
|
||||
|
||||
The ith node should have a resource labeled 'i' with quantity 500.
|
||||
|
||||
Args:
|
||||
num_nodes: The number of nodes that we expect to be in the cluster.
|
||||
|
||||
Raises:
|
||||
RuntimeError: This exception is raised if the cluster is not configured
|
||||
properly for this test.
|
||||
"""
|
||||
logger.warning("Waiting for cluster to have %s nodes.", num_nodes)
|
||||
while True:
|
||||
nodes = ray.nodes()
|
||||
if len(nodes) == num_nodes:
|
||||
break
|
||||
if len(nodes) > num_nodes:
|
||||
raise RuntimeError(
|
||||
"The cluster has %s nodes, but it should "
|
||||
"only have %s.", len(nodes), num_nodes)
|
||||
if not ([set(node["Resources"].keys())
|
||||
for node in ray.nodes()] == [{str(i), "CPU"}
|
||||
for i in range(num_nodes)]):
|
||||
raise RuntimeError(
|
||||
"The ith node in the cluster should have a "
|
||||
"custom resource called 'i' with quantity "
|
||||
"500. The nodes are\n%s", ray.nodes())
|
||||
if not ([[
|
||||
resource_quantity
|
||||
for resource_name, resource_quantity in node["Resources"].items()
|
||||
if resource_name != "CPU"
|
||||
] for node in ray.nodes()] == num_nodes * [[500.0]]):
|
||||
raise RuntimeError(
|
||||
"The ith node in the cluster should have a "
|
||||
"custom resource called 'i' with quantity "
|
||||
"500. The nodes are\n%s", ray.nodes())
|
||||
for node in ray.nodes():
|
||||
if ("0" in node["Resources"] and node["ObjectStoreSocketName"] !=
|
||||
ray.worker.global_worker.plasma_client.store_socket_name):
|
||||
raise RuntimeError("The node that this driver is connected to "
|
||||
"must have a custom resource labeled '0'.")
|
||||
|
||||
|
||||
@ray.remote
|
||||
def create_array(size):
|
||||
return np.zeros(shape=size, dtype=np.uint8)
|
||||
|
||||
|
||||
@ray.remote
|
||||
def no_op(*values):
|
||||
# The reason that this function takes *values is so that we can pass in
|
||||
# an arbitrary number of object IDs to create task dependencies.
|
||||
return 1
|
||||
|
||||
|
||||
@ray.remote
|
||||
class Actor():
|
||||
def ping(self, *values):
|
||||
pass
|
||||
|
||||
|
||||
def warm_up_cluster(num_nodes, object_store_memory):
|
||||
"""Warm up the cluster.
|
||||
|
||||
This will allocate enough objects in each object store to cause eviction
|
||||
because the first time a driver or worker touches a region of memory in the
|
||||
object store, it may be slower.
|
||||
|
||||
Note that remote functions are exported lazily, so the first invocation of
|
||||
a given remote function will be slower.
|
||||
"""
|
||||
logger.warning("Warming up the object store.")
|
||||
size = object_store_memory * 2 // 5
|
||||
num_objects = 2
|
||||
while size > 0:
|
||||
object_ids = []
|
||||
for i in range(num_nodes):
|
||||
for _ in range(num_objects):
|
||||
object_ids += [
|
||||
create_array._remote(args=[size], resources={str(i): 1})
|
||||
]
|
||||
size = size // 2
|
||||
num_objects = min(num_objects * 2, 1000)
|
||||
for object_id in object_ids:
|
||||
ray.get(object_id)
|
||||
logger.warning("Finished warming up the object store.")
|
||||
|
||||
# Invoke all of the remote functions once so that the definitions are
|
||||
# broadcast to the workers.
|
||||
ray.get(no_op.remote())
|
||||
ray.get(Actor.remote().ping.remote())
|
||||
|
||||
|
||||
def run_multiple_trials(f, num_trials):
|
||||
durations = []
|
||||
for _ in range(num_trials):
|
||||
start = time.time()
|
||||
f()
|
||||
durations.append(time.time() - start)
|
||||
return durations
|
||||
|
||||
|
||||
def test_tasks(num_nodes):
|
||||
def one_thousand_serial_tasks_local_node():
|
||||
for _ in range(1000):
|
||||
ray.get(no_op._remote(resources={"0": 1}))
|
||||
|
||||
durations = run_multiple_trials(one_thousand_serial_tasks_local_node, 10)
|
||||
logger.warning(
|
||||
"one_thousand_serial_tasks_local_node \n"
|
||||
" min: %.2gs\n"
|
||||
" mean: %.2gs\n"
|
||||
" std: %.2gs", np.min(durations), np.mean(durations),
|
||||
np.std(durations))
|
||||
|
||||
def one_thousand_serial_tasks_remote_node():
|
||||
for _ in range(1000):
|
||||
ray.get(no_op._remote(resources={"1": 1}))
|
||||
|
||||
durations = run_multiple_trials(one_thousand_serial_tasks_remote_node, 10)
|
||||
logger.warning(
|
||||
"one_thousand_serial_tasks_remote_node \n"
|
||||
" min: %.2gs\n"
|
||||
" mean: %.2gs\n"
|
||||
" std: %.2gs", np.min(durations), np.mean(durations),
|
||||
np.std(durations))
|
||||
|
||||
def ten_thousand_parallel_tasks_local():
|
||||
ray.get([no_op._remote(resources={"0": 1}) for _ in range(10000)])
|
||||
|
||||
durations = run_multiple_trials(ten_thousand_parallel_tasks_local, 5)
|
||||
logger.warning(
|
||||
"ten_thousand_parallel_tasks_local \n"
|
||||
" min: %.2gs\n"
|
||||
" mean: %.2gs\n"
|
||||
" std: %.2gs", np.min(durations), np.mean(durations),
|
||||
np.std(durations))
|
||||
|
||||
def ten_thousand_parallel_tasks_load_balanced():
|
||||
ray.get([
|
||||
no_op._remote(resources={str(i % num_nodes): 1})
|
||||
for i in range(10000)
|
||||
])
|
||||
|
||||
durations = run_multiple_trials(ten_thousand_parallel_tasks_load_balanced,
|
||||
5)
|
||||
logger.warning(
|
||||
"ten_thousand_parallel_tasks_load_balanced \n"
|
||||
" min: %.2gs\n"
|
||||
" mean: %.2gs\n"
|
||||
" std: %.2gs", np.min(durations), np.mean(durations),
|
||||
np.std(durations))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
num_nodes = args.num_nodes
|
||||
|
||||
object_store_memory = 10**8
|
||||
|
||||
# Configure the cluster or check that it is properly configured.
|
||||
|
||||
if num_nodes < 2:
|
||||
raise ValueError("The --num-nodes argument must be at least 2.")
|
||||
|
||||
if args.redis_address:
|
||||
ray.init(redis_address=args.redis_address)
|
||||
wait_for_and_check_cluster_configuration(num_nodes)
|
||||
logger.warning(
|
||||
"Running performance benchmarks on the cluster with "
|
||||
"address %s.", args.redis_address)
|
||||
else:
|
||||
logger.warning(
|
||||
"Running performance benchmarks on a simulated cluster "
|
||||
"of %s nodes.", num_nodes)
|
||||
|
||||
cluster = start_local_cluster(num_nodes, object_store_memory)
|
||||
|
||||
if not args.skip_object_store_warmup:
|
||||
warm_up_cluster(num_nodes, object_store_memory)
|
||||
|
||||
# Run the benchmarks.
|
||||
|
||||
test_tasks(num_nodes)
|
||||
|
||||
# TODO(rkn): Test actors, test object transfers, test tasks with many
|
||||
# dependencies.
|
|
@ -1,38 +0,0 @@
|
|||
Running the benchmarks
|
||||
======================
|
||||
|
||||
You can run the benchmark suite by doing the following:
|
||||
|
||||
1. Install https://github.com/ray-project/asv: ``cd asv; pip install -e .``
|
||||
2. Run ``asv dev`` in this directory.
|
||||
|
||||
To run ASV inside docker, you can use the following command:
|
||||
``docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA bash -c '/ray/test/jenkins_tests/run_asv.sh'``
|
||||
``docker run --rm --shm-size=10G --memory=10G $DOCKER_SHA bash -c '/ray/test/jenkins_tests/run_rllib_asv.sh'``
|
||||
|
||||
|
||||
Visualizing Benchmarks
|
||||
======================
|
||||
|
||||
For visualizing regular Ray benchmarks, you must copy the S3 bucket down to `$RAY_DIR/python`.
|
||||
|
||||
.. code-block::
|
||||
|
||||
cd $RAY_DIR/python
|
||||
aws s3 sync s3://$BUCKET/ASV/ .
|
||||
|
||||
For rllib, you must sync a _particular_ folder down to `$RLLIB_DIR (ray/python/ray/rllib)`.
|
||||
|
||||
.. code-block::
|
||||
|
||||
cd $RAY_DIR/python/ray/rllib
|
||||
aws s3 sync s3://$BUCKET/RLLIB_RESULTS/ ./RLLIB_RESULTS
|
||||
|
||||
Then, in the directory, you can run:
|
||||
|
||||
.. code-block::
|
||||
|
||||
asv publish --no-pull
|
||||
asv preview
|
||||
|
||||
This creates the directory and then launches a server at which you can visualize results.
|
|
@ -1,85 +0,0 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import ray
|
||||
|
||||
NUM_WORKERS = 4
|
||||
|
||||
|
||||
def setup():
|
||||
if not hasattr(setup, "is_initialized"):
|
||||
ray.init(num_cpus=4)
|
||||
setup.is_initialized = True
|
||||
|
||||
|
||||
@ray.remote
|
||||
class MyActor(object):
|
||||
def __init__(self):
|
||||
self.x = None
|
||||
|
||||
def get_x(self):
|
||||
return self.x
|
||||
|
||||
def set_x(self, x):
|
||||
self.x = x
|
||||
|
||||
|
||||
class ActorInstantiationSuite(object):
|
||||
def instantiate_actor(self):
|
||||
actor = MyActor.remote()
|
||||
# Block to make sure actor is instantiated
|
||||
ray.get(actor.get_x.remote())
|
||||
|
||||
def instantiate_many_actors(self):
|
||||
actors = [MyActor.remote() for _ in range(NUM_WORKERS + 10)]
|
||||
ray.get([actor.get_x.remote() for actor in actors])
|
||||
|
||||
def time_instantiate_actor(self):
|
||||
self.instantiate_actor()
|
||||
|
||||
def peakmem_instantiate_actor(self):
|
||||
self.instantiate_actor()
|
||||
|
||||
def time_instantiate_many_actors(self):
|
||||
self.instantiate_many_actors()
|
||||
|
||||
def peakmem_instantiate_many_actors(self):
|
||||
self.instantiate_many_actors()
|
||||
|
||||
|
||||
class ActorMethodSuite(object):
|
||||
def setup(self):
|
||||
self.actor = MyActor.remote()
|
||||
# Block to make sure actor is instantiated
|
||||
ray.get(self.actor.get_x.remote())
|
||||
|
||||
def time_call_method(self):
|
||||
ray.get(self.actor.get_x.remote())
|
||||
|
||||
def peakmem_call_method(self):
|
||||
ray.get(self.actor.get_x.remote())
|
||||
|
||||
|
||||
class ActorCheckpointSuite(object):
|
||||
def checkpoint_and_restore(self):
|
||||
actor = MyActor.remote()
|
||||
actor.__ray_checkpoint__.remote()
|
||||
assert ray.get(actor.__ray_checkpoint_restore__.remote())
|
||||
|
||||
def save_checkpoint(self):
|
||||
actor = MyActor.remote()
|
||||
checkpoint = ray.get(actor.__ray_save_checkpoint__.remote())
|
||||
return checkpoint
|
||||
|
||||
def time_checkpoint_and_restore(self):
|
||||
self.checkpoint_and_restore()
|
||||
|
||||
def peakmem_checkpoint_and_restore(self):
|
||||
self.checkpoint_and_restore()
|
||||
|
||||
def time_save_checkpoint(self):
|
||||
self.save_checkpoint()
|
||||
|
||||
def mem_save_checkpoint(self):
|
||||
return self.save_checkpoint()
|
|
@ -1,108 +0,0 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
|
||||
import ray
|
||||
|
||||
|
||||
def setup():
|
||||
if not hasattr(setup, "is_initialized"):
|
||||
ray.init(num_cpus=4)
|
||||
setup.is_initialized = True
|
||||
|
||||
|
||||
def square(x):
|
||||
return x * x
|
||||
|
||||
|
||||
class Foo(object):
|
||||
def bar(self):
|
||||
return 42
|
||||
|
||||
|
||||
class GetBase(object):
|
||||
def setup(self):
|
||||
self.oid = ray.put(None)
|
||||
|
||||
def time_get(self):
|
||||
ray.get(self.oid)
|
||||
|
||||
def peakmem_get(self):
|
||||
ray.get(self.oid)
|
||||
|
||||
|
||||
class GetBoolSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put(True)
|
||||
|
||||
|
||||
class GetIntSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put(42)
|
||||
|
||||
|
||||
class GetFloatSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put(4.2)
|
||||
|
||||
|
||||
class GetComplexSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put(4 + 2j)
|
||||
|
||||
|
||||
class GetNoneSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put(None)
|
||||
|
||||
|
||||
class GetStringSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put("forty-two")
|
||||
|
||||
|
||||
class GetBytesSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put(b"forty-two")
|
||||
|
||||
|
||||
class GetListSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put([i for i in range(100)])
|
||||
|
||||
|
||||
class GetSetSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put({i for i in range(100)})
|
||||
|
||||
|
||||
class GetTupleSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put(tuple(range(100)))
|
||||
|
||||
|
||||
class GetDictSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put({i: i for i in range(100)})
|
||||
|
||||
|
||||
class GetFunctionSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put(square)
|
||||
|
||||
|
||||
class GetClassSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put(Foo)
|
||||
|
||||
|
||||
class GetClassInstanceSuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put(Foo())
|
||||
|
||||
|
||||
class GetArraySuite(GetBase):
|
||||
def setup(self):
|
||||
self.oid = ray.put(np.random.random((100, 100, 100)))
|
|
@ -1,108 +0,0 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
|
||||
import ray
|
||||
|
||||
|
||||
def setup():
|
||||
if not hasattr(setup, "is_initialized"):
|
||||
ray.init(num_cpus=0)
|
||||
setup.is_initialized = True
|
||||
|
||||
|
||||
def square(x):
|
||||
return x * x
|
||||
|
||||
|
||||
class Foo(object):
|
||||
def bar(self):
|
||||
return 42
|
||||
|
||||
|
||||
class PutBase(object):
|
||||
def setup(self):
|
||||
self.object = None
|
||||
|
||||
def time_put(self):
|
||||
ray.put(self.object)
|
||||
|
||||
def peakmem_put(self):
|
||||
ray.put(self.object)
|
||||
|
||||
|
||||
class PutBoolSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = True
|
||||
|
||||
|
||||
class PutIntSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = 42
|
||||
|
||||
|
||||
class PutFloatSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = 4.2
|
||||
|
||||
|
||||
class PutComplexSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = 4 + 2j
|
||||
|
||||
|
||||
class PutNoneSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = None
|
||||
|
||||
|
||||
class PutStringSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = "forty-two"
|
||||
|
||||
|
||||
class PutBytesSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = b"forty-two"
|
||||
|
||||
|
||||
class PutListSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = [i for i in range(100)]
|
||||
|
||||
|
||||
class PutSetSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = {i for i in range(100)}
|
||||
|
||||
|
||||
class PutTupleSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = tuple(range(100))
|
||||
|
||||
|
||||
class PutDictSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = {i: i for i in range(100)}
|
||||
|
||||
|
||||
class PutFunctionSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = square
|
||||
|
||||
|
||||
class PutClassSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = Foo
|
||||
|
||||
|
||||
class PutClassInstanceSuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = Foo()
|
||||
|
||||
|
||||
class PutArraySuite(PutBase):
|
||||
def setup(self):
|
||||
self.object = np.random.random((100, 100, 100))
|
|
@ -1,31 +0,0 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import ray
|
||||
from ray.experimental.queue import Queue
|
||||
|
||||
|
||||
def setup():
|
||||
if not hasattr(setup, "is_initialized"):
|
||||
ray.init(num_cpus=4)
|
||||
setup.is_initialized = True
|
||||
|
||||
|
||||
class QueueSuite(object):
|
||||
def time_put(self):
|
||||
queue = Queue(1000)
|
||||
for i in range(1000):
|
||||
queue.put(i)
|
||||
|
||||
def time_get(self):
|
||||
queue = Queue()
|
||||
for i in range(1000):
|
||||
queue.put(i)
|
||||
for _ in range(1000):
|
||||
queue.get()
|
||||
|
||||
def time_qsize(self):
|
||||
queue = Queue()
|
||||
for _ in range(1000):
|
||||
queue.qsize()
|
|
@ -1,61 +0,0 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import ray
|
||||
|
||||
|
||||
def setup():
|
||||
if not hasattr(setup, "is_initialized"):
|
||||
ray.init(num_cpus=10, resources={"foo": 1})
|
||||
setup.is_initialized = True
|
||||
|
||||
|
||||
def square(x):
|
||||
return x * x
|
||||
|
||||
|
||||
class TaskSuite(object):
|
||||
timeout = 10
|
||||
|
||||
def setup(self):
|
||||
self.square = ray.remote(square)
|
||||
|
||||
def run_many_tasks(self):
|
||||
ray.get([self.square.remote(i) for i in range(100)])
|
||||
|
||||
def run_task_dependency(self):
|
||||
first_oid = self.square.remote(2)
|
||||
second_oid = self.square.remote(first_oid)
|
||||
ray.get(second_oid)
|
||||
|
||||
def time_submit_task(self):
|
||||
self.square.remote(2)
|
||||
|
||||
def time_task_lifecycle(self):
|
||||
ray.get(self.square.remote(2))
|
||||
|
||||
def peakmem_task_lifecycle(self):
|
||||
ray.get(self.square.remote(2))
|
||||
|
||||
def time_run_many_tasks(self):
|
||||
self.run_many_tasks()
|
||||
|
||||
def peakmem_run_many_tasks(self):
|
||||
self.run_many_tasks()
|
||||
|
||||
def time_task_dependency(self):
|
||||
self.run_task_dependency()
|
||||
|
||||
def peakmem_task_dependency(self):
|
||||
self.run_task_dependency()
|
||||
|
||||
|
||||
class CPUTaskSuite(TaskSuite):
|
||||
def setup(self):
|
||||
self.square = ray.remote(num_cpus=1)(square)
|
||||
|
||||
|
||||
class CustomResourceTaskSuite(TaskSuite):
|
||||
def setup(self):
|
||||
self.square = ray.remote(resources={"foo": 1})(square)
|
|
@ -1,39 +0,0 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import time
|
||||
|
||||
import ray
|
||||
|
||||
|
||||
def setup(*args):
|
||||
if not hasattr(setup, "is_initialized"):
|
||||
ray.init(num_cpus=4)
|
||||
setup.is_initialized = True
|
||||
|
||||
|
||||
@ray.remote
|
||||
def sleep(x):
|
||||
time.sleep(x)
|
||||
|
||||
|
||||
class WaitSuite(object):
|
||||
timeout = 0.01
|
||||
timer = time.time
|
||||
|
||||
def time_wait_task(self):
|
||||
ray.wait([sleep.remote(0.1)])
|
||||
|
||||
def time_wait_many_tasks(self, num_returns):
|
||||
tasks = [sleep.remote(i / 5) for i in range(4)]
|
||||
ray.wait(tasks, num_returns=num_returns)
|
||||
|
||||
time_wait_many_tasks.params = list(range(1, 4))
|
||||
time_wait_many_tasks.param_names = ["num_returns"]
|
||||
|
||||
def time_wait_timeout(self, timeout):
|
||||
ray.wait([sleep.remote(0.5)], timeout=timeout)
|
||||
|
||||
time_wait_timeout.params = [0.2, 0.8]
|
||||
time_wait_timeout.param_names = ["timeout"]
|
|
@ -1,51 +0,0 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import ray
|
||||
|
||||
|
||||
def setup():
|
||||
if not hasattr(setup, "is_initialized"):
|
||||
ray.init(num_cpus=4)
|
||||
setup.is_initialized = True
|
||||
|
||||
|
||||
@ray.remote
|
||||
def trivial_function():
|
||||
return 1
|
||||
|
||||
|
||||
class TimeSuite(object):
|
||||
"""An example benchmark."""
|
||||
|
||||
def setup(self):
|
||||
self.d = {}
|
||||
for x in range(500):
|
||||
self.d[x] = None
|
||||
|
||||
def time_keys(self):
|
||||
for key in self.d.keys():
|
||||
pass
|
||||
|
||||
def time_range(self):
|
||||
d = self.d
|
||||
for key in range(500):
|
||||
d[key]
|
||||
|
||||
|
||||
class MemSuite(object):
|
||||
def mem_list(self):
|
||||
return [0] * 256
|
||||
|
||||
|
||||
class MicroBenchmarkSuite(object):
|
||||
def time_submit(self):
|
||||
trivial_function.remote()
|
||||
|
||||
def time_submit_and_get(self):
|
||||
x = trivial_function.remote()
|
||||
ray.get(x)
|
||||
|
||||
def time_put(self):
|
||||
ray.put(1)
|
Loading…
Add table
Reference in a new issue