Signed-off-by: Max Pumperla <max.pumperla@googlemail.com>
This commit is contained in:
Max Pumperla 2022-05-13 16:27:31 +02:00
parent 9e21e392ee
commit 6fdd2e6d91
12 changed files with 172 additions and 138 deletions

View file

@ -10,6 +10,18 @@
margin: auto;
}
li.toctree-l1 {
font-weight: 600;
}
li.toctree-l2 {
font-weight: 520;
}
li.toctree-l3 {
font-weight: normal;
}
/* Hide confusing "<-" back arrow in navigation for larger displays */
@media (min-width: 768px) {
#navbar-toggler {

View file

@ -1,14 +1,11 @@
format: jb-book
root: index
parts:
- caption: Overview
- caption: ""
chapters:
- file: ray-overview/index
- file: ray-overview/installation
- file: ray-overview/ray-libraries
- caption: Ray ML
chapters:
- file: data/dataset
title: Ray Data
sections:
@ -18,7 +15,6 @@ parts:
- file: data/examples/big_data_ingestion
- file: data/package-ref
- file: data/integrations
- file: train/train
title: Ray Train
sections:
@ -27,7 +23,6 @@ parts:
- file: train/faq
- file: train/architecture
- file: train/api
- file: tune/index
title: Ray Tune
sections:
@ -57,8 +52,7 @@ parts:
title: "Scalability Benchmarks"
- file: tune/examples/index
- file: tune/faq
- file: tune/api_docs/overview.rst
- file: tune/api_docs/overview
- file: serve/index
title: Ray Serve
sections:
@ -79,7 +73,6 @@ parts:
- file: serve/tutorials/index
- file: serve/faq
- file: serve/package-ref
- file: rllib/index
title: Ray RLlib
sections:
@ -96,20 +89,35 @@ parts:
- file: rllib/rllib-dev
- file: rllib/rllib-examples
- file: rllib/package_ref/index
- file: workflows/concepts
title: Ray Workflows
- file: ray-core/walkthrough
title: Ray Core
sections:
- file: workflows/basics
- file: workflows/management
- file: workflows/actors
- file: workflows/metadata
- file: workflows/events
- file: workflows/comparison
- file: workflows/advanced
- file: workflows/package-ref
- file: ray-core/key-concepts
title: "Key Concepts"
- file: ray-core/user-guide
title: "User Guides"
- file: ray-core/examples/overview
title: "Examples"
sections:
- file: ray-core/examples/plot_example-a3c
- file: ray-core/examples/plot_example-lm
- file: ray-core/examples/plot_hyperparameter
- file: ray-core/examples/plot_lbfgs
- file: ray-core/examples/plot_parameter_server
- file: ray-core/examples/plot_pong_example
- file: ray-core/package-ref
- file: cluster/quickstart
title: Ray Clusters
sections:
- file: cluster/user-guide
- file: cluster/cloud
- file: cluster/deploy
- file: cluster/api
- file: cluster/usage-stats
- file: ray-more-libs/index
title: More Ray ML Libraries
title: More Ray Libraries
sections:
- file: ray-air/getting-started
sections:
@ -117,6 +125,17 @@ parts:
- file: ray-air/deployment
- file: ray-air/examples/index
- file: ray-air/package-ref
- file: workflows/concepts
title: Ray Workflows
sections:
- file: workflows/basics
- file: workflows/management
- file: workflows/actors
- file: workflows/metadata
- file: workflows/events
- file: workflows/comparison
- file: workflows/advanced
- file: workflows/package-ref
- file: ray-more-libs/joblib
- file: ray-more-libs/lightgbm-ray
- file: ray-more-libs/multiprocessing
@ -127,48 +146,19 @@ parts:
- file: ray-core/examples/dask_xgboost/dask_xgboost
- file: ray-core/examples/modin_xgboost/modin_xgboost
- caption: Ray Core
chapters:
- file: ray-core/walkthrough
title: Getting Started
- file: ray-core/key-concepts
title: "Key Concepts"
- file: ray-core/user-guide
title: "User Guides"
- file: ray-core/examples/overview
title: "Examples"
sections:
- file: ray-core/examples/plot_example-a3c
- file: ray-core/examples/plot_example-lm
- file: ray-core/examples/plot_hyperparameter
- file: ray-core/examples/plot_lbfgs
- file: ray-core/examples/plot_parameter_server
- file: ray-core/examples/plot_pong_example
- file: ray-core/package-ref
- caption: Ray Clusters
chapters:
- file: cluster/quickstart
- file: cluster/user-guide
- file: cluster/cloud
- file: cluster/deploy
- file: cluster/api
- file: cluster/usage-stats
- caption: References
chapters:
- file: ray-references/api
title: API References
- caption: Developer Guides
chapters:
- file: ray-contribute/getting-involved
- file: ray-contribute/index
title: Developer Guides
sections:
- file: ray-contribute/development
- file: ray-contribute/docs
- file: ray-contribute/fake-autoscaler
- file: ray-core/examples/testing-tips
- file: ray-core/configure
- file: ray-observability/index
- file: ray-contribute/whitepaper
- file: ray-contribute/getting-involved
sections:
- file: ray-contribute/development
- file: ray-contribute/docs
- file: ray-contribute/fake-autoscaler
- file: ray-core/examples/testing-tips
- file: ray-core/configure
- file: ray-observability/index
# TODO: Add examples section

View file

@ -1,7 +1,7 @@
.. _air-api-ref:
AIR API
=======
Ray AIR API
===========
.. contents::
:local:

View file

@ -419,7 +419,7 @@
"## Where to go from here?\n",
"\n",
"There are many other ways to contribute to Ray other than documentation.\n",
"See {ref}`our contributor guide <getting-involved>` for more information."
"See {ref}`our contributor guide <getting-involved-ref>` for more information."
]
}
],
@ -432,4 +432,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View file

@ -1,4 +1,4 @@
.. _getting-involved:
.. _getting-involved-ref:
Getting Involved / Contributing
===============================

View file

@ -0,0 +1,33 @@
# Developer Guides
Learn more about how to contribute to Ray, get involved with our developer community,
how to configure Ray, learn about how to debug and profile Ray, and more.
```{eval-rst}
.. panels::
:container: container pb-4
:column: col-md-4 px-2 py-2
:img-top-cls: pt-5 w-50 d-block mx-auto
---
:img-top: /images/ray_logo.png
.. link-button:: getting-involved-ref
:type: ref
:text: How to get involved and contribute to Ray?
:classes: btn-link btn-block stretched-link
---
:img-top: /images/ray_logo.png
.. link-button:: configuring-ray
:type: ref
:text: How to use and configure Ray?
:classes: btn-link btn-block stretched-link
---
:img-top: /images/ray_logo.png
.. link-button:: ray-observability
:type: ref
:text: How to use Ray's advanced observability features?
:classes: btn-link btn-block stretched-link
```

View file

@ -1,8 +0,0 @@
.. _whitepaper:
Architecture Whitepaper
=======================
For an in-depth overview of Ray internals, check out the `Ray 1.0 Architecture whitepaper <https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview>`__.
For more about the scalability and performance of the Ray dataplane, see the `Exoshuffle paper <https://arxiv.org/abs/2203.05072>`__.

View file

@ -10,4 +10,4 @@ Ray delegates the metadata tracking of an object to its *owner process*. Typical
The owner of the object tracks the location and reference count for an object. If the owner process is unexpectedly killed, then the object cannot be recovered, even via lineage reconstruction.
For more information about how object ownership works, see the :ref:`Ray Architecture Whitepaper <whitepaper>`.
For more information about how object ownership works, see the :ref:`Ray Architecture Whitepaper <papers>`.

View file

@ -1,12 +1,14 @@
More Ray ML Libraries
=====================
More Ray Libraries
==================
.. TODO: we added the three Ray Core examples below, since they don't really belong there.
Going forward, make sure that all "Ray Lightning" and XGBoost topics are in one document or group,
and not next to each other.
.. TODO: we added the three Ray Core examples below, since they don't really belong
there. Going forward, make sure that all "Ray Lightning" and XGBoost topics are
in one document or group, and not next to each other.
Ray has a variety of different extra integrations with ecosystem libraries.
- :ref:`air`
- :ref:`workflows`
- :ref:`ray-joblib`
- :ref:`lightgbm-ray`
- :ref:`ray-multiprocessing`

View file

@ -1,5 +1,7 @@
.. _ray-observability:
Observability
===============
=============
.. toctree::
:maxdepth: 1

View file

@ -3,7 +3,7 @@
(gentle-intro)=
# Getting Started Guide
# Getting Started
This tutorial will give you a quick tour of Ray's features.
To get started, we'll start by installing Ray.
@ -516,9 +516,66 @@ ray submit cluster.yaml example.py --start
`````
(learn_more)=
## Learn More
Here are some talks, papers, and press coverage involving Ray and its libraries.
Please raise an issue if any of the below links are broken, or if you'd like to add your own talk!
### Blog and Press
- [Modern Parallel and Distributed Python: A Quick Tutorial on Ray](https://towardsdatascience.com/modern-parallel-and-distributed-python-a-quick-tutorial-on-ray-99f8d70369b8)
- [Why Every Python Developer Will Love Ray](https://www.datanami.com/2019/11/05/why-every-python-developer-will-love-ray/)
- [Ray: A Distributed System for AI (BAIR)](http://bair.berkeley.edu/blog/2018/01/09/ray/)
- [10x Faster Parallel Python Without Python Multiprocessing](https://towardsdatascience.com/10x-faster-parallel-python-without-python-multiprocessing-e5017c93cce1)
- [Implementing A Parameter Server in 15 Lines of Python with Ray](https://ray-project.github.io/2018/07/15/parameter-server-in-fifteen-lines.html)
- [Ray Distributed AI Framework Curriculum](https://rise.cs.berkeley.edu/blog/ray-intel-curriculum/)
- [RayOnSpark: Running Emerging AI Applications on Big Data Clusters with Ray and Analytics Zoo](https://medium.com/riselab/rayonspark-running-emerging-ai-applications-on-big-data-clusters-with-ray-and-analytics-zoo-923e0136ed6a)
- [First user tips for Ray](https://rise.cs.berkeley.edu/blog/ray-tips-for-first-time-users/)
- [Tune: a Python library for fast hyperparameter tuning at any scale](https://towardsdatascience.com/fast-hyperparameter-tuning-at-scale-d428223b081c)
- [Cutting edge hyperparameter tuning with Ray Tune](https://medium.com/riselab/cutting-edge-hyperparameter-tuning-with-ray-tune-be6c0447afdf)
- [New Library Targets High Speed Reinforcement Learning](https://www.datanami.com/2018/02/01/rays-new-library-targets-high-speed-reinforcement-learning/)
- [Scaling Multi Agent Reinforcement Learning](http://bair.berkeley.edu/blog/2018/12/12/rllib/)
- [Functional RL with Keras and Tensorflow Eager](https://bair.berkeley.edu/blog/2019/10/14/functional-rl/)
- [How to Speed up Pandas by 4x with one line of code](https://www.kdnuggets.com/2019/11/speed-up-pandas-4x.html)
- [Quick Tip -- Speed up Pandas using Modin](https://pythondata.com/quick-tip-speed-up-pandas-using-modin/)
- [Ray Blog](https://medium.com/distributed-computing-with-ray)
### Talks (Videos)
- [Unifying Large Scale Data Preprocessing and Machine Learning Pipelines with Ray Datasets \| PyData 2021](https://zoom.us/rec/share/0cjbk_YdCTbiTm7gNhzSeNxxTCCEy1pCDUkkjfBjtvOsKGA8XmDOx82jflHdQCUP.fsjQkj5PWSYplOTz?startTime=1635456658000) [(slides)](https://docs.google.com/presentation/d/19F_wxkpo1JAROPxULmJHYZd3sKryapkbMd0ib3ndMiU/edit?usp=sharing)
- [Programming at any Scale with Ray \| SF Python Meetup Sept 2019](https://www.youtube.com/watch?v=LfpHyIXBhlE)
- [Ray for Reinforcement Learning \| Data Council 2019](https://www.youtube.com/watch?v=Ayc0ca150HI)
- [Scaling Interactive Pandas Workflows with Modin](https://www.youtube.com/watch?v=-HjLd_3ahCw)
- [Ray: A Distributed Execution Framework for AI \| SciPy 2018](https://www.youtube.com/watch?v=D_oz7E4v-U0)
- [Ray: A Cluster Computing Engine for Reinforcement Learning Applications \| Spark Summit](https://www.youtube.com/watch?v=xadZRRB_TeI)
- [RLlib: Ray Reinforcement Learning Library \| RISECamp 2018](https://www.youtube.com/watch?v=eeRGORQthaQ)
- [Enabling Composition in Distributed Reinforcement Learning \| Spark Summit 2018](https://www.youtube.com/watch?v=jAEPqjkjth4)
- [Tune: Distributed Hyperparameter Search \| RISECamp 2018](https://www.youtube.com/watch?v=38Yd_dXW51Q)
### Slides
- [Talk given at UC Berkeley DS100](https://docs.google.com/presentation/d/1sF5T_ePR9R6fAi2R6uxehHzXuieme63O2n_5i9m7mVE/edit?usp=sharing)
- [Talk given in October 2019](https://docs.google.com/presentation/d/13K0JsogYQX3gUCGhmQ1PQ8HILwEDFysnq0cI2b88XbU/edit?usp=sharing)
- [Talk given at RISECamp 2019](https://docs.google.com/presentation/d/1v3IldXWrFNMK-vuONlSdEuM82fuGTrNUDuwtfx4axsQ/edit?usp=sharing)
(papers)=
### Papers
- [Ray 1.0 Architecture whitepaper](https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview)
- [Exoshuffle: large-scale data shuffle in Ray](https://arxiv.org/abs/2203.05072)
- [RLlib paper](https://arxiv.org/abs/1712.09381)
- [RLlib flow paper](https://arxiv.org/abs/2011.12719)
- [Tune paper](https://arxiv.org/abs/1807.05118)
- [Ray paper (old)](https://arxiv.org/abs/1712.05889)
- [Ray HotOS paper (old)](https://arxiv.org/abs/1703.03924)
```{include} learn-more.md
```
```{include} /_includes/overview/announcement_bottom.md
```

View file

@ -1,54 +0,0 @@
# Learn More
Here are some talks, papers, and press coverage involving Ray and its libraries.
Please raise an issue if any of the below links are broken, or if you'd like to add your own talk!
## Blog and Press
- [Modern Parallel and Distributed Python: A Quick Tutorial on Ray](https://towardsdatascience.com/modern-parallel-and-distributed-python-a-quick-tutorial-on-ray-99f8d70369b8)
- [Why Every Python Developer Will Love Ray](https://www.datanami.com/2019/11/05/why-every-python-developer-will-love-ray/)
- [Ray: A Distributed System for AI (BAIR)](http://bair.berkeley.edu/blog/2018/01/09/ray/)
- [10x Faster Parallel Python Without Python Multiprocessing](https://towardsdatascience.com/10x-faster-parallel-python-without-python-multiprocessing-e5017c93cce1)
- [Implementing A Parameter Server in 15 Lines of Python with Ray](https://ray-project.github.io/2018/07/15/parameter-server-in-fifteen-lines.html)
- [Ray Distributed AI Framework Curriculum](https://rise.cs.berkeley.edu/blog/ray-intel-curriculum/)
- [RayOnSpark: Running Emerging AI Applications on Big Data Clusters with Ray and Analytics Zoo](https://medium.com/riselab/rayonspark-running-emerging-ai-applications-on-big-data-clusters-with-ray-and-analytics-zoo-923e0136ed6a)
- [First user tips for Ray](https://rise.cs.berkeley.edu/blog/ray-tips-for-first-time-users/)
- [Tune: a Python library for fast hyperparameter tuning at any scale](https://towardsdatascience.com/fast-hyperparameter-tuning-at-scale-d428223b081c)
- [Cutting edge hyperparameter tuning with Ray Tune](https://medium.com/riselab/cutting-edge-hyperparameter-tuning-with-ray-tune-be6c0447afdf)
- [New Library Targets High Speed Reinforcement Learning](https://www.datanami.com/2018/02/01/rays-new-library-targets-high-speed-reinforcement-learning/)
- [Scaling Multi Agent Reinforcement Learning](http://bair.berkeley.edu/blog/2018/12/12/rllib/)
- [Functional RL with Keras and Tensorflow Eager](https://bair.berkeley.edu/blog/2019/10/14/functional-rl/)
- [How to Speed up Pandas by 4x with one line of code](https://www.kdnuggets.com/2019/11/speed-up-pandas-4x.html)
- [Quick Tip -- Speed up Pandas using Modin](https://pythondata.com/quick-tip-speed-up-pandas-using-modin/)
- [Ray Blog](https://medium.com/distributed-computing-with-ray)
## Talks (Videos)
- [Unifying Large Scale Data Preprocessing and Machine Learning Pipelines with Ray Datasets \| PyData 2021](https://zoom.us/rec/share/0cjbk_YdCTbiTm7gNhzSeNxxTCCEy1pCDUkkjfBjtvOsKGA8XmDOx82jflHdQCUP.fsjQkj5PWSYplOTz?startTime=1635456658000) [(slides)](https://docs.google.com/presentation/d/19F_wxkpo1JAROPxULmJHYZd3sKryapkbMd0ib3ndMiU/edit?usp=sharing)
- [Programming at any Scale with Ray \| SF Python Meetup Sept 2019](https://www.youtube.com/watch?v=LfpHyIXBhlE)
- [Ray for Reinforcement Learning \| Data Council 2019](https://www.youtube.com/watch?v=Ayc0ca150HI)
- [Scaling Interactive Pandas Workflows with Modin](https://www.youtube.com/watch?v=-HjLd_3ahCw)
- [Ray: A Distributed Execution Framework for AI \| SciPy 2018](https://www.youtube.com/watch?v=D_oz7E4v-U0)
- [Ray: A Cluster Computing Engine for Reinforcement Learning Applications \| Spark Summit](https://www.youtube.com/watch?v=xadZRRB_TeI)
- [RLlib: Ray Reinforcement Learning Library \| RISECamp 2018](https://www.youtube.com/watch?v=eeRGORQthaQ)
- [Enabling Composition in Distributed Reinforcement Learning \| Spark Summit 2018](https://www.youtube.com/watch?v=jAEPqjkjth4)
- [Tune: Distributed Hyperparameter Search \| RISECamp 2018](https://www.youtube.com/watch?v=38Yd_dXW51Q)
## Slides
- [Talk given at UC Berkeley DS100](https://docs.google.com/presentation/d/1sF5T_ePR9R6fAi2R6uxehHzXuieme63O2n_5i9m7mVE/edit?usp=sharing)
- [Talk given in October 2019](https://docs.google.com/presentation/d/13K0JsogYQX3gUCGhmQ1PQ8HILwEDFysnq0cI2b88XbU/edit?usp=sharing)
- [Talk given at RISECamp 2019](https://docs.google.com/presentation/d/1v3IldXWrFNMK-vuONlSdEuM82fuGTrNUDuwtfx4axsQ/edit?usp=sharing)
## Papers
- [Ray 1.0 Architecture whitepaper](https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview)
- [Exoshuffle: large-scale data shuffle in Ray](https://arxiv.org/abs/2203.05072)
- [RLlib paper](https://arxiv.org/abs/1712.09381)
- [RLlib flow paper](https://arxiv.org/abs/2011.12719)
- [Tune paper](https://arxiv.org/abs/1807.05118)
- [Ray paper (old)](https://arxiv.org/abs/1712.05889)
- [Ray HotOS paper (old)](https://arxiv.org/abs/1703.03924)