Remove unnecessary files. (#4)

This commit is contained in:
Robert Nishihara 2016-10-26 23:24:40 -07:00 committed by Philipp Moritz
parent 6f75c738b5
commit 6ed641177d
6 changed files with 0 additions and 605 deletions

View file

@ -1,68 +0,0 @@
#include <string>
#include <iostream>
#include <fstream>
#include <grpc++/grpc++.h>
struct RayConfig {
bool log_to_file = false;
std::ofstream logfile;
};
extern RayConfig global_ray_config;
#define RAY_VERBOSE -1
#define RAY_INFO 0
#define RAY_DEBUG 1
#define RAY_FATAL 2
#define RAY_REFCOUNT RAY_VERBOSE
#define RAY_ALIAS RAY_VERBOSE
#ifdef _MSC_VER
extern "C" __declspec(dllimport) int __stdcall IsDebuggerPresent();
#define RAY_BREAK_IF_DEBUGGING() IsDebuggerPresent() && (__debugbreak(), 1)
#else
#define RAY_BREAK_IF_DEBUGGING()
#endif
#define RAY_LOG(LEVEL, MESSAGE) \
if (LEVEL == RAY_VERBOSE) { \
\
} else if (LEVEL == RAY_FATAL) { \
std::cerr << "fatal error occured: " << MESSAGE << std::endl; \
if (global_ray_config.log_to_file) { \
global_ray_config.logfile << "fatal error occured: " << MESSAGE << std::endl; \
} \
RAY_BREAK_IF_DEBUGGING(); \
std::exit(1); \
} else if (LEVEL == RAY_DEBUG) { \
\
} else { \
if (global_ray_config.log_to_file) { \
global_ray_config.logfile << MESSAGE << std::endl; \
} else { \
std::cout << MESSAGE << std::endl; \
} \
}
#define RAY_CHECK(condition, message) \
if (!(condition)) {\
RAY_LOG(RAY_FATAL, "Check failed at line " << __LINE__ << " in " << __FILE__ << ": " << #condition << " with message " << message) \
}
#define RAY_WARN(condition, message) \
if (!(condition)) {\
RAY_LOG(RAY_INFO, "Check failed at line " << __LINE__ << " in " << __FILE__ << ": " << #condition << " with message " << message) \
}
#define RAY_CHECK_EQ(var1, var2, message) RAY_CHECK((var1) == (var2), message)
#define RAY_CHECK_NEQ(var1, var2, message) RAY_CHECK((var1) != (var2), message)
#define RAY_CHECK_LE(var1, var2, message) RAY_CHECK((var1) <= (var2), message)
#define RAY_CHECK_LT(var1, var2, message) RAY_CHECK((var1) < (var2), message)
#define RAY_CHECK_GE(var1, var2, message) RAY_CHECK((var1) >= (var2), message)
#define RAY_CHECK_GT(var1, var2, message) RAY_CHECK((var1) > (var2), message)
#define RAY_CHECK_GRPC(expr) \
do { \
grpc::Status _s = (expr); \
RAY_WARN(_s.ok(), "grpc call failed with message " << _s.error_message()); \
} while (0);

View file

@ -1,46 +0,0 @@
#ifndef RAY_INCLUDE_RAY_H
#define RAY_INCLUDE_RAY_H
#include <vector>
#include <unordered_map>
#include <algorithm>
#include "logging.h"
typedef size_t ObjectID;
typedef size_t WorkerId;
typedef size_t ObjStoreId;
typedef size_t OperationId;
typedef size_t SegmentId; // index into a memory segment table
class FnInfo {
size_t num_return_vals_;
std::vector<WorkerId> workers_; // `workers_` is a sorted vector
public:
void set_num_return_vals(size_t num) {
num_return_vals_ = num;
}
size_t num_return_vals() const {
return num_return_vals_;
}
void add_worker(WorkerId workerid) {
// insert `workerid` into `workers_` so that `workers_` stays sorted
workers_.insert(std::lower_bound(workers_.begin(), workers_.end(), workerid), workerid);
}
size_t num_workers() const {
return workers_.size();
}
const std::vector<WorkerId>& workers() const {
return workers_;
}
};
typedef std::vector<std::vector<ObjStoreId> > ObjTable;
typedef std::unordered_map<std::string, FnInfo> FnTable;
class objstore_not_registered_error : public std::runtime_error
{
public:
objstore_not_registered_error(const std::string& msg) : std::runtime_error(msg) {}
};
#endif

View file

@ -1,42 +0,0 @@
syntax = "proto3";
message Arg {
uint64 objectid = 1; // The objectid for the argument.
string serialized_arg = 2; // A serialized representation of an argument passed by value.
}
message Task {
string name = 1; // Name of the function call. Must not be empty.
repeated Arg arg = 2; // List of object IDs of the arguments to the function.
repeated uint64 result = 3; // Object IDs for result
}
message Put {
uint64 objectid = 1; // The objectid for the object that was put
}
message Get {
uint64 objectid = 1; // The objectid for the object that is retrieved
}
// This is used internally by the scheduler. From the scheduler's perspective,
// the submission of tasks (via SubmitTask) and the submission of puts (via
// PutObj) look very similar, and so it is useful to be able to handle them
// together (for example in the computation graph).
message Operation {
Task task = 1;
Put put = 2;
Get get = 4;
uint64 creator_operationid = 3; // The id of the task that called this task or put.
}
message TaskStatus {
uint64 operationid = 1;
string function_name = 2;
string worker_address = 3;
string error_message = 4;
}
message CompGraph {
repeated Operation operation = 1;
}

View file

@ -1,324 +0,0 @@
// This file defines the GRPC interface between scheduler, object stores and
// workers. These are used for communication over the network.
// Terminology:
// Worker: A cluster consists of multiple worker processes (typically one
// per core) which execute tasks that can access objects from object stores.
// Object store: Typically there is one object store per node which holds the
// objects locally stored on that node.
// Scheduler: The scheduler process keeps track of a mapping from object
// IDs to object stores, orchestrates data transfer between object
// stores and assigns tasks to workers.
syntax = "proto3";
import "graph.proto";
import "types.proto";
// Scheduler
service Scheduler {
// Register a new worker with the scheduler
rpc RegisterWorker(RegisterWorkerRequest) returns (RegisterWorkerReply);
// Register an object store with the scheduler
rpc RegisterObjStore(RegisterObjStoreRequest) returns (RegisterObjStoreReply);
// Tell the scheduler that a worker successfully imported a remote function.
rpc RegisterRemoteFunction(RegisterRemoteFunctionRequest) returns (AckReply);
// Asks the scheduler to execute a task, immediately returns an object ID to the result
rpc SubmitTask(SubmitTaskRequest) returns (SubmitTaskReply);
// Increment the count of the object ID
rpc IncrementCount(ChangeCountRequest) returns (AckReply);
// Decrement the count of the object ID
rpc DecrementCount(ChangeCountRequest) returns (AckReply);
// Request an object ID for an object that will be put in an object store
rpc PutObj(PutObjRequest) returns (PutObjReply);
// Request delivery of an object from an object store that holds the object to the local object store
rpc RequestObj(RequestObjRequest) returns (AckReply);
// Used by the worker to tell the scheduler that two objectids should refer to the same object
rpc AliasObjectIDs(AliasObjectIDsRequest) returns (AckReply);
// Used by an object store to tell the scheduler that an object is ready (i.e. has been finalized and can be shared)
rpc ObjReady(ObjReadyRequest) returns (AckReply);
// Increments the reference count of a particular object ID
rpc IncrementRefCount(IncrementRefCountRequest) returns (AckReply);
// Decrements the reference count of a particular object ID
rpc DecrementRefCount(DecrementRefCountRequest) returns (AckReply);
// Used by the worker to notify the scheduler about which objectids a particular object contains
rpc AddContainedObjectIDs(AddContainedObjectIDsRequest) returns (AckReply);
// Used by the worker to ask for work, this also returns the status of the previous task if there was one
rpc ReadyForNewTask(ReadyForNewTaskRequest) returns (AckReply);
// Get information about the scheduler state
rpc SchedulerInfo(SchedulerInfoRequest) returns (SchedulerInfoReply);
// Get information about tasks
rpc TaskInfo(TaskInfoRequest) returns (TaskInfoReply);
// Kills the workers
rpc KillWorkers(KillWorkersRequest) returns (KillWorkersReply);
// Run a function on all workers
rpc RunFunctionOnAllWorkers(RunFunctionOnAllWorkersRequest) returns (AckReply);
// Exports function to the workers
rpc ExportRemoteFunction(ExportRemoteFunctionRequest) returns (AckReply);
// Ship an initializer and reinitializer for a reusable variable to the workers
rpc ExportReusableVariable(ExportReusableVariableRequest) returns (AckReply);
// Notify the scheduler that a failure occurred while running a task, importing a remote function, or importing a reusable variable.
rpc NotifyFailure(NotifyFailureRequest) returns (AckReply);
// Polls the scheduler to see what objectids can be retrieved in the input list.
rpc Wait(WaitRequest) returns (WaitReply);
}
message AckReply {
}
message RegisterWorkerRequest {
string node_ip_address = 1; // The IP address of the node the worker is running on.
string worker_address = 2; // The address of the worker.
string objstore_address = 3; // The address of the object store the worker should connect to. If omitted, this will be assigned by the scheduler.
bool is_driver = 4; // True if the worker is a driver, and false otherwise.
}
message RegisterWorkerReply {
uint64 workerid = 1; // Worker ID assigned by the scheduler
uint64 objstoreid = 2; // The Object store ID of the worker's local object store
string objstore_address = 3; // IP address of the object store the worker should connect to
}
message RegisterObjStoreRequest {
string objstore_address = 1; // IP address of the object store being registered
}
message RegisterObjStoreReply {
uint64 objstoreid = 1; // Object store ID assigned by the scheduler
}
message RegisterRemoteFunctionRequest {
uint64 workerid = 1; // Worker that can execute the function
string function_name = 2; // Name of the remote function
uint64 num_return_vals = 3; // Number of return values of the function. This is only present if the function was successfully imported.
}
message NotifyFailure {
Failure failure = 1; // The failure object.
}
message SubmitTaskRequest {
uint64 workerid = 1; // The ID of the worker submitting the task
Task task = 2; // Contains name of the function to be executed and arguments
}
message SubmitTaskReply {
repeated uint64 result = 1; // Object IDs of the function return values
bool function_registered = 2; // True if the function was registered, false otherwise
bool no_workers = 3; // True if no workers have registered with the scheduler, false otherwise
}
message RequestObjRequest {
uint64 workerid = 1; // Worker that tries to request the object
uint64 objectid = 2; // Object ID of the object being requested
}
message PutObjRequest {
uint64 workerid = 1; // Worker that tries to put an object
}
message PutObjReply {
uint64 objectid = 1; // Object ID assigned by the scheduler to the object
}
message AliasObjectIDsRequest {
uint64 alias_objectid = 1; // ObjectID which will be aliased
uint64 target_objectid = 2; // The target ObjectID
}
message ObjReadyRequest {
uint64 objectid = 1; // Object ID of the object that has been finalized
uint64 objstoreid = 2; // ID of the object store the object lives on
}
message IncrementRefCountRequest {
repeated uint64 objectid = 1; // Object IDs whose reference count should be incremented. Duplicates will be incremented multiple times.
}
message AddContainedObjectIDsRequest {
uint64 objectid = 1; // The objectid of the object in question
repeated uint64 contained_objectid = 2; // Object IDs contained in the object
}
message DecrementRefCountRequest {
repeated uint64 objectid = 1; // Object IDs whose reference count should be decremented. Duplicates will be decremented multiple times.
}
message ReadyForNewTaskRequest {
uint64 workerid = 1; // ID of the worker which executed the task
}
message ChangeCountRequest {
uint64 objectid = 1; // Object ID of the object whose reference count is increased or decreased
}
// The following messages are used to get information about the scheduler state
message SchedulerInfoRequest {
}
message FnTableEntry {
repeated uint64 workerid = 1; // ID of the worker that can execute the function
uint64 num_return_vals = 2; // Number of return values of the function
}
message SchedulerInfoReply {
repeated uint64 operationid = 1; // OperationIds of the tasks on the task queue
repeated uint64 avail_worker = 3; // List of workers waiting to get a task assigned
map<string, FnTableEntry> function_table = 2; // Table of all available remote function
repeated uint64 target_objectid = 4; // The target_objectids_ data structure
repeated uint64 reference_count = 5; // The reference_counts_ data structure
CompGraph computation_graph = 6; // The computation graph constructed so far
repeated ObjstoreData objstore = 7; // Information about the object stores
}
message WaitRequest {
repeated uint64 objectids = 1; // List of objectids to be checked.
}
message WaitReply {
repeated uint64 indices = 1; // List of indices that correspond to objectids in the original list that are ready.
}
// Object stores
service ObjStore {
// Tell the object store to begin getting an object from another object store (called by the scheduler)
rpc StartDelivery(StartDeliveryRequest) returns (AckReply);
// Accept incoming data from another object store, as a stream of object chunks
rpc StreamObjTo(StreamObjToRequest) returns (stream ObjChunk);
// Notify the object store about objectid aliasing. This is called by the scheduler
rpc NotifyAlias(NotifyAliasRequest) returns (AckReply);
// Tell the object store to deallocate an object held by the object store. This is called by the scheduler.
rpc DeallocateObject(DeallocateObjectRequest) returns (AckReply);
// Get info about the object store state
rpc ObjStoreInfo(ObjStoreInfoRequest) returns (ObjStoreInfoReply);
}
message StartDeliveryRequest {
string objstore_address = 1; // Object store to get the object from
uint64 objectid = 2; // ID of object that gets delivered
}
message RegisterObjRequest {
uint64 objectid = 1; // ID of object that gets registered
}
message RegisterObjReply {
uint64 handle = 1; // Handle to memory segment where object is stored
}
message StreamObjToRequest {
uint64 objectid = 1; // Object ID of the object being streamed
}
message ObjChunk {
uint64 total_size = 1; // Total size of the object
uint64 metadata_offset = 2; // Offset of the arrow metadata
bytes data = 3; // Data for this chunk of the object
}
message NotifyAliasRequest {
uint64 alias_objectid = 1; // The objectid being aliased
uint64 canonical_objectid = 2; // The canonical objectid that points to the actual object
}
message DeallocateObjectRequest {
uint64 canonical_objectid = 1; // The canonical objectid of the object to deallocate
}
message GetObjRequest {
uint64 objectid = 1; // Object ID of the object being requested by the worker
}
message TaskInfoRequest {
}
message TaskInfoReply {
repeated TaskStatus failed_task = 1; // The tasks that have failed.
repeated TaskStatus running_task = 2; // The tasks that are currently running.
repeated Failure failed_remote_function_import = 3; // The remote function imports that failed.
repeated Failure failed_reusable_variable_import = 4; // The reusable variable imports that failed.
repeated Failure failed_reinitialize_reusable_variable = 5; // The reusable variable reinitializations that failed.
repeated Failure failed_function_to_run = 6; // The function to run on all workers that failed.
}
message KillWorkersRequest {
}
message KillWorkersReply {
bool success = 1; // Currently, the only reason to fail is if there are workers still executing tasks
}
message RunFunctionOnAllWorkersRequest {
Function function = 1;
}
message ExportRemoteFunctionRequest {
Function function = 1;
}
message ExportReusableVariableRequest {
ReusableVar reusable_variable = 1; // The reusable variable to export.
}
message NotifyFailureRequest {
Failure failure = 1; // The failure object.
}
// These messages are for getting information about the object store state
message ObjStoreInfoRequest {
repeated uint64 objectid = 1; // Object IDs we want to retrieve from the store for inspection
}
message ObjStoreInfoReply {
repeated uint64 objectid = 1; // List of object IDs in the store
repeated Obj obj = 2; // Protocol buffer objects that were requested
}
// Workers
service WorkerService {
rpc ExecuteTask(ExecuteTaskRequest) returns (AckReply); // Scheduler calls a function from the worker
rpc RunFunctionOnWorker(RunFunctionOnWorkerRequest) returns (AckReply); // Runs a function on the worker.
rpc ImportRemoteFunction(ImportRemoteFunctionRequest) returns (AckReply); // Scheduler imports a function into the worker
rpc ImportReusableVariable(ImportReusableVariableRequest) returns (AckReply); // Scheduler imports a reusable variable into the worker
rpc Die(DieRequest) returns (AckReply); // Kills this worker
rpc PrintErrorMessage(PrintErrorMessageRequest) returns (AckReply); // Causes an error message to be printed.
}
message ExecuteTaskRequest {
Task task = 1; // Contains name of the function to be executed and arguments
}
message RunFunctionOnWorkerRequest {
Function function = 1;
}
message ImportRemoteFunctionRequest {
Function function = 1;
}
message ImportReusableVariableRequest {
ReusableVar reusable_variable = 1; // The reusable variable to export.
}
message DieRequest {
}
// This message is used by the worker service to send messages to the worker
// that are processed by the worker's main loop.
message WorkerMessage {
oneof worker_item {
Task task = 1; // A task for the worker to execute.
Function function = 2; // A remote function to import on the worker.
ReusableVar reusable_variable = 3; // A reusable variable to import on the worker.
Function function_to_run = 4; // An arbitrary function to run on the worker.
}
}
message PrintErrorMessageRequest {
Failure failure = 1; // The failure object.
}

View file

@ -1,118 +0,0 @@
syntax = "proto3";
message Int {
int64 data = 1;
}
message Long {
int64 data = 1;
}
message String {
bytes data = 1;
}
message Unicode {
string data = 1;
}
message Double {
double data = 1;
}
// Empty used to represent a None object
message Empty {
}
message Bool {
bool data = 1;
}
message ObjID {
uint64 data = 1;
}
message PyObj {
bytes data = 1;
}
// Used for shipping remote functions to workers
message Function {
string name = 1;
bytes implementation = 2;
}
message ReusableVar {
string name = 1; // The name of the reusable variable.
Function initializer = 2; // A serialized version of the function that initializes the reusable variable.
Function reinitializer = 3; // A serialized version of the function that reinitializes the reusable variable.
}
enum FailedType {
FailedTask = 0;
FailedRemoteFunctionImport = 1;
FailedReusableVariableImport = 2;
FailedReinitializeReusableVariable = 3;
FailedFunctionToRun = 4;
}
// Used to represent exceptions thrown in Python. This will happen when a task
// fails to execute, a remote function fails to be imported, or a reusable
// variable fails to be imported.
message Failure {
FailedType type = 1; // The type of the failure.
uint64 workerid = 2; // The id of the worker on which the failure occurred.
string worker_address = 3; // The address of the worker on which the failure occurred. This contains the same information as the workerid.
string name = 4; // The name of the failed object.
string error_message = 5; // The error message from the failure.
}
message ObjstoreData {
uint64 objstoreid = 1; // The ID of the object store.
string address = 2; // The address of the object store.
}
// Union of possible object types
message Obj {
String string_data = 1;
Unicode unicode_data = 13;
Int int_data = 2;
Long long_data = 12;
Double double_data = 3;
Bool bool_data = 10;
Tuple tuple_data = 7;
List list_data = 4;
Dict dict_data = 8;
Array array_data = 5;
Empty empty_data = 9;
ObjID objectid_data = 11;
PyObj pyobj_data = 6;
}
message List {
repeated Obj elem = 1;
}
message Tuple {
repeated Obj elem = 1;
}
message DictEntry {
Obj key = 1;
Obj value = 2;
}
message Dict {
repeated DictEntry elem = 1;
}
message Array {
repeated uint64 shape = 1;
sint64 dtype = 2;
bool is_scalar = 8;
repeated double double_data = 3;
repeated float float_data = 4;
repeated sint64 int_data = 5;
repeated uint64 uint_data = 6;
repeated uint64 objectid_data = 7;
}

View file

@ -1,7 +0,0 @@
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
# TODO(mehrdad): How would this look in windows, where does the protoc executable go?
# On Linux, we compile it ourselves, on Windows we might not want to do that (?)
mkdir -p $DIR/../lib/python/ray/internal/
$DIR/../thirdparty/grpc/bins/opt/protobuf/protoc -I ../protos/ --python_out=$DIR/../lib/python/ray/internal/ ../protos/graph.proto
$DIR/../thirdparty/grpc/bins/opt/protobuf/protoc -I ../protos/ --python_out=$DIR/../lib/python/ray/internal/ ../protos/types.proto