[air] Update to beta (#27393)

Update API references to beta. Needed as we are going to beta in 2.0.

I left out RL/Scikit-Learn/HuggingFace.
This commit is contained in:
Richard Liaw 2022-08-02 17:10:41 -07:00 committed by GitHub
parent 4d87e8112a
commit 6dc3dbdd37
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
23 changed files with 30 additions and 30 deletions

View file

@ -38,7 +38,7 @@ _CHECKPOINT_DIR_PREFIX = "checkpoint_tmp_"
logger = logging.getLogger(__name__)
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class Checkpoint:
"""Ray AIR Checkpoint.

View file

@ -77,7 +77,7 @@ def _repr_dataclass(obj, *, default_values: Optional[Dict[str, Any]] = None) ->
@dataclass
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class ScalingConfig:
"""Configuration for scaling training.
@ -264,7 +264,7 @@ class ScalingConfig:
@dataclass
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class DatasetConfig:
"""Configuration for ingest of a single Dataset.
@ -428,7 +428,7 @@ class DatasetConfig:
@dataclass
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class FailureConfig:
"""Configuration related to failure handling of each run/trial.
@ -463,7 +463,7 @@ class FailureConfig:
@dataclass
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class CheckpointConfig:
"""Configurable parameters for defining the checkpointing strategy.
@ -543,7 +543,7 @@ class CheckpointConfig:
@dataclass
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class RunConfig:
"""Runtime configuration for individual trials that are run.

View file

@ -9,7 +9,7 @@ import pandas as pd
@dataclass
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class Result:
"""The final result of a ML training run or a Tune trial.

View file

@ -13,14 +13,14 @@ if TYPE_CHECKING:
from ray.air.data_batch_type import DataBatchType
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class PreprocessorNotFittedException(RuntimeError):
"""Error raised when the preprocessor needs to be fitted first."""
pass
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class Preprocessor(abc.ABC):
"""Implements an ML preprocessing operation.

View file

@ -27,7 +27,7 @@ GenDataset = Union["Dataset", Callable[[], "Dataset"]]
logger = logging.getLogger(__name__)
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class TrainingFailedError(RuntimeError):
"""An error indicating that training has failed."""
@ -322,7 +322,7 @@ class BaseTrainer(abc.ABC):
"""
raise NotImplementedError
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
def fit(self) -> Result:
"""Runs training.

View file

@ -12,7 +12,7 @@ from ray.train.predictor import Predictor
from ray.util.annotations import PublicAPI
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class BatchPredictor:
"""Batch predictor class.

View file

@ -13,7 +13,7 @@ if TYPE_CHECKING:
from ray.data.preprocessor import Preprocessor
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class HorovodTrainer(DataParallelTrainer):
"""A Trainer for data parallel Horovod training.

View file

@ -13,7 +13,7 @@ if TYPE_CHECKING:
from ray.data.preprocessor import Preprocessor
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class LightGBMCheckpoint(Checkpoint):
"""A :py:class:`~ray.air.checkpoint.Checkpoint` with LightGBM-specific
functionality.

View file

@ -15,7 +15,7 @@ if TYPE_CHECKING:
from ray.data.preprocessor import Preprocessor
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class LightGBMPredictor(Predictor):
"""A predictor for LightGBM models.

View file

@ -13,7 +13,7 @@ if TYPE_CHECKING:
from ray.data.preprocessor import Preprocessor
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class LightGBMTrainer(GBDTTrainer):
"""A Trainer for data parallel LightGBM training.

View file

@ -29,14 +29,14 @@ TYPE_TO_ENUM: Dict[Type[DataBatchType], DataType] = {
}
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class PredictorNotSerializableException(RuntimeError):
"""Error raised when trying to serialize a Predictor instance."""
pass
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class Predictor(abc.ABC):
"""Predictors load models from checkpoints to perform inference.

View file

@ -12,7 +12,7 @@ if TYPE_CHECKING:
from ray.data.preprocessor import Preprocessor
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class TensorflowCheckpoint(Checkpoint):
"""A :py:class:`~ray.air.checkpoint.Checkpoint` with TensorFlow-specific
functionality.

View file

@ -19,7 +19,7 @@ if TYPE_CHECKING:
logger = logging.getLogger(__name__)
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class TensorflowPredictor(DLPredictor):
"""A predictor for TensorFlow models.

View file

@ -11,7 +11,7 @@ if TYPE_CHECKING:
from ray.data.preprocessor import Preprocessor
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class TensorflowTrainer(DataParallelTrainer):
"""A Trainer for data parallel Tensorflow training.

View file

@ -12,7 +12,7 @@ if TYPE_CHECKING:
from ray.data.preprocessor import Preprocessor
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class TorchCheckpoint(Checkpoint):
"""A :py:class:`~ray.air.checkpoint.Checkpoint` with Torch-specific
functionality.

View file

@ -18,7 +18,7 @@ if TYPE_CHECKING:
logger = logging.getLogger(__name__)
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class TorchPredictor(DLPredictor):
"""A predictor for PyTorch models.

View file

@ -11,7 +11,7 @@ if TYPE_CHECKING:
from ray.data.preprocessor import Preprocessor
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class TorchTrainer(DataParallelTrainer):
"""A Trainer for data parallel PyTorch training.

View file

@ -13,7 +13,7 @@ if TYPE_CHECKING:
from ray.data.preprocessor import Preprocessor
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class XGBoostCheckpoint(Checkpoint):
"""A :py:class:`~ray.air.checkpoint.Checkpoint` with XGBoost-specific
functionality.

View file

@ -14,7 +14,7 @@ if TYPE_CHECKING:
from ray.data.preprocessor import Preprocessor
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class XGBoostPredictor(Predictor):
"""A predictor for XGBoost models.

View file

@ -13,7 +13,7 @@ if TYPE_CHECKING:
from ray.data.preprocessor import Preprocessor
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class XGBoostTrainer(GBDTTrainer):
"""A Trainer for data parallel XGBoost training.

View file

@ -58,7 +58,7 @@ def generate_variants(
yield resolved_vars, spec
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
def grid_search(values: Iterable) -> Dict[str, List]:
"""Convenience method for specifying grid search over a value.

View file

@ -8,7 +8,7 @@ from ray.util import PublicAPI
@dataclass
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class TuneConfig:
"""Tune specific configs.

View file

@ -28,7 +28,7 @@ _TUNER_INTERNAL = "_tuner_internal"
_SELF = "self"
@PublicAPI(stability="alpha")
@PublicAPI(stability="beta")
class Tuner:
"""Tuner is the recommended way of launching hyperparameter tuning jobs with Ray Tune.