diff --git a/doc/source/cluster/kubernetes/getting-started.ipynb b/doc/source/cluster/kubernetes/getting-started.ipynb index 135295219..134fca627 100644 --- a/doc/source/cluster/kubernetes/getting-started.ipynb +++ b/doc/source/cluster/kubernetes/getting-started.ipynb @@ -74,7 +74,7 @@ "metadata": {}, "source": [ "To run the example in this guide, make sure your Kubernetes cluster (or local Kind cluster) can accomodate\n", - "additional resource requests of 3 CPU and 2Gi memory. \n", + "additional resource requests of 3 CPU and 3Gi memory. \n", "\n", "(kuberay-operator-deploy)=\n", "## Deploying the KubeRay operator\n", @@ -157,7 +157,7 @@ "outputs": [], "source": [ "# Deploy a sample Ray Cluster CR from the KubeRay repo:\n", - "! kubectl apply -f https://raw.githubusercontent.com/ray-project/kuberay/release-0.3/ray-operator/config/samples/ray-cluster.autoscaler.yaml\n", + "! kubectl apply -f https://raw.githubusercontent.com/ray-project/kuberay/master/ray-operator/config/samples/ray-cluster.autoscaler.yaml\n", "\n", "# This Ray cluster is named `raycluster-autoscaler` because it has optional Ray Autoscaler support enabled." ] diff --git a/doc/source/cluster/kubernetes/user-guides/configuring-autoscaling.md b/doc/source/cluster/kubernetes/user-guides/configuring-autoscaling.md index ea3ab6171..3c04365df 100644 --- a/doc/source/cluster/kubernetes/user-guides/configuring-autoscaling.md +++ b/doc/source/cluster/kubernetes/user-guides/configuring-autoscaling.md @@ -49,7 +49,7 @@ First, follow the [quickstart guide](kuberay-quickstart) to create an autoscalin # Create the KubeRay operator. $ kubectl create -k "github.com/ray-project/kuberay/ray-operator/config/default?ref=v0.3.0&timeout=90s" # Create an autoscaling Ray cluster. -$ kubectl apply -f https://raw.githubusercontent.com/ray-project/kuberay/release-0.3/ray-operator/config/samples/ray-cluster.autoscaler.yaml +$ kubectl apply -f https://raw.githubusercontent.com/ray-project/kuberay/master/ray-operator/config/samples/ray-cluster.autoscaler.yaml ``` Now, we can run a Ray program on the head pod that uses [``request_resources``](ref-autoscaler-sdk) to scale the cluster to a total of 3 CPUs. The head and worker pods in our [example cluster config](https://github.com/ray-project/kuberay/blob/master/ray-operator/config/samples/ray-cluster.autoscaler.yaml) each have a capacity of 1 CPU, and we specified a minimum of 1 worker pod. Thus, the request should trigger upscaling of one additional worker pod.