diff --git a/doc/source/rllib-concepts.rst b/doc/source/rllib-concepts.rst index a81029c4e..f629d4ad1 100644 --- a/doc/source/rllib-concepts.rst +++ b/doc/source/rllib-concepts.rst @@ -423,8 +423,8 @@ Building Policies in TensorFlow Eager Policies built with ``build_tf_policy`` (most of the reference algorithms are) can be run in eager mode by setting -the ``"eager": True`` / ``"eager_tracing": True`` config options or -using ``rllib train --eager [--trace]``. +the ``"framework": "tf2"`` / ``"eager_tracing": True`` config options or +using ``rllib train '{"framework": "tf2", "eager_tracing": True}'``. This will tell RLlib to execute the model forward pass, action distribution, loss, and stats functions in eager mode. diff --git a/doc/source/rllib-toc.rst b/doc/source/rllib-toc.rst index 9f4a497d9..86a2b3f34 100644 --- a/doc/source/rllib-toc.rst +++ b/doc/source/rllib-toc.rst @@ -222,7 +222,7 @@ references in the cluster. TensorFlow 2.0 ~~~~~~~~~~~~~~ -RLlib currently runs in ``tf.compat.v1`` mode. This means eager execution is disabled by default, and RLlib imports TF with ``import tensorflow.compat.v1 as tf; tf.disable_v2_behaviour()``. Eager execution can be enabled manually by calling ``tf.enable_eager_execution()`` or setting the ``"eager": True`` trainer config. +RLlib currently runs in ``tf.compat.v1`` mode. This means eager execution is disabled by default, and RLlib imports TF with ``import tensorflow.compat.v1 as tf; tf.disable_v2_behaviour()``. Eager execution can be enabled manually by calling ``tf.enable_eager_execution()`` or setting the ``"framework": "tf2"`` trainer config. .. |tensorflow| image:: tensorflow.png :class: inline-figure diff --git a/doc/source/rllib-training.rst b/doc/source/rllib-training.rst index c88b7ecdd..1bfbc7053 100644 --- a/doc/source/rllib-training.rst +++ b/doc/source/rllib-training.rst @@ -14,7 +14,7 @@ You can train a simple DQN trainer with the following command: .. code-block:: bash - rllib train --run DQN --env CartPole-v0 # --eager [--trace] for eager execution + rllib train --run DQN --env CartPole-v0 # --config '{"framework": "tf2", "eager_tracing": True}' for eager execution By default, the results will be logged to a subdirectory of ``~/ray_results``. This subdirectory will contain a file ``params.json`` which contains the @@ -906,7 +906,7 @@ Eager Mode Policies built with ``build_tf_policy`` (most of the reference algorithms are) can be run in eager mode by setting the ``"framework": "[tf2|tfe]"`` / ``"eager_tracing": True`` config options or using -``rllib train --eager [--trace]``. +``rllib train --config '{"framework": "tf2"}' [--trace]``. This will tell RLlib to execute the model forward pass, action distribution, loss, and stats functions in eager mode. diff --git a/doc/source/rllib.rst b/doc/source/rllib.rst index 33a808a04..2f045e0d5 100644 --- a/doc/source/rllib.rst +++ b/doc/source/rllib.rst @@ -28,8 +28,8 @@ Then, you can try out training in the following equivalent ways: .. code-block:: bash rllib train --run=PPO --env=CartPole-v0 # -v [-vv] for verbose, - # --eager [--trace] for eager execution, - # --torch to use PyTorch + # --config='{"framework": "tf2", "eager_tracing": True}' for eager, + # --torch to use PyTorch OR --config='{"framework": "torch"}' .. code-block:: python