diff --git a/examples/hyperopt/driver.py b/examples/hyperopt/driver.py new file mode 100644 index 000000000..0345b99dc --- /dev/null +++ b/examples/hyperopt/driver.py @@ -0,0 +1,39 @@ +import numpy as np +import ray +import ray.services as services +import os + +import functions + +num_workers = 3 +samples = 50 +epochs = 100 + +worker_dir = os.path.dirname(os.path.abspath(__file__)) +worker_path = os.path.join(worker_dir, "worker.py") +services.start_singlenode_cluster(return_drivers=False, num_objstores=1, num_workers_per_objstore=num_workers, worker_path=worker_path) + +best_params = None +best_accuracy = 0 + +results = [] + +for i in range(samples): + learning_rate = 10 ** np.random.uniform(-6, 1) + batch_size = np.random.randint(30, 100) + dropout = np.random.uniform(0, 1) + stddev = 10 ** np.random.uniform(-3, 1) + randparams = {"learning_rate": learning_rate, "batch_size": batch_size, "dropout": dropout, "stddev": stddev} + results.append((randparams, functions.train_cnn(randparams, epochs))) + +for i in range(samples): + params, ref = results[i] + accuracy = ray.get(ref) + print "With hyperparameters {}, we achieve an accuracy of {:.4}%.".format(params, 100 * accuracy) + if accuracy > best_accuracy: + best_params = params + best_accuracy = accuracy + print "Best parameters are now {}.".format(params) + +print "Best parameters over {} samples was {}, with an accuracy of {:.4}%.".format(samples, best_params, 100 * best_accuracy) +services.cleanup() diff --git a/examples/hyperopt/functions.py b/examples/hyperopt/functions.py new file mode 100644 index 000000000..d31c295c3 --- /dev/null +++ b/examples/hyperopt/functions.py @@ -0,0 +1,70 @@ +# Most of the tensorflow code is adapted from Tensorflow's tutorial on using CNNs to train MNIST +# https://www.tensorflow.org/versions/r0.9/tutorials/mnist/pros/index.html#build-a-multilayer-convolutional-network +import tensorflow as tf +from tensorflow.examples.tutorials.mnist import input_data +import numpy as np +import ray + +mnist = input_data.read_data_sets("MNIST_data", one_hot=True) + +def weight(shape, stddev): + initial = tf.truncated_normal(shape, stddev=stddev) + return tf.Variable(initial) + +def bias(shape): + initial = tf.constant(0.1, shape=shape) + return tf.Variable(initial) + +def conv2d(x, W): + return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME") + +def max_pool_2x2(x): + return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") + +@ray.remote([dict, int], [float]) +def train_cnn(params, epochs): + learning_rate = params["learning_rate"] + batch_size = params["batch_size"] + keep = 1 - params["dropout"] + stddev = params["stddev"] + x = tf.placeholder(tf.float32, shape=[None, 784]) + y = tf.placeholder(tf.float32, shape=[None, 10]) + keep_prob = tf.placeholder(tf.float32) + train_step, accuracy = cnn_setup(x, y, keep_prob, learning_rate, stddev) + with tf.Session() as sess: + sess.run(tf.initialize_all_variables()) + for i in range(1, epochs): + batch = mnist.train.next_batch(batch_size) + sess.run(train_step, feed_dict={x: batch[0], y: batch[1], keep_prob: keep}) + if i % 100 == 0: # checks if accuracy is low enough to stop early every set number of epochs + train_ac = accuracy.eval(feed_dict={x: batch[0], y: batch[1], keep_prob: 1.0}) + if train_ac < 0.25: # Accuracy threshold is on a application to application basis. + totalacc = accuracy.eval(feed_dict={x: mnist.validation.images, y: mnist.validation.labels, keep_prob: 1.0}) + return totalacc + totalacc = accuracy.eval(feed_dict={x: mnist.validation.images, y: mnist.validation.labels, keep_prob: 1.0}) + return totalacc + +def cnn_setup(x, y, keep_prob, lr, stddev): + first_hidden = 32 + second_hidden = 64 + fc_hidden = 1024 + W_conv1 = weight([5, 5, 1, first_hidden], stddev) + B_conv1 = bias([first_hidden]) + x_image = tf.reshape(x, [-1, 28, 28, 1]) + h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + B_conv1) + h_pool1 = max_pool_2x2(h_conv1) + W_conv2 = weight([5, 5, first_hidden, second_hidden], stddev) + b_conv2 = bias([second_hidden]) + h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) + h_pool2 = max_pool_2x2(h_conv2) + W_fc1 = weight([7 * 7 * second_hidden, fc_hidden], stddev) + b_fc1 = bias([fc_hidden]) + h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * second_hidden]) + h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) + h_fc1_drop= tf.nn.dropout(h_fc1, keep_prob) + W_fc2 = weight([fc_hidden, 10], stddev) + b_fc2 = bias([10]) + y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) + cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_conv), reduction_indices=[1])) + correct_pred = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1)) + return tf.train.AdamOptimizer(lr).minimize(cross_entropy), tf.reduce_mean(tf.cast(correct_pred, tf.float32)) diff --git a/examples/hyperopt/worker.py b/examples/hyperopt/worker.py new file mode 100644 index 000000000..357d5345e --- /dev/null +++ b/examples/hyperopt/worker.py @@ -0,0 +1,16 @@ +import argparse +import ray +import ray.worker as worker + +import functions + +parser = argparse.ArgumentParser(description="Parse addresses for the worker to connect to.") +parser.add_argument("--scheduler-address", default="127.0.0.1:10001", type=str, help="the scheduler's address") +parser.add_argument("--objstore-address", default="127.0.0.1:20001", type=str, help="the objstore's address") +parser.add_argument("--worker-address", default="127.0.0.1:40001", type=str, help="the worker's address") + +if __name__ == '__main__': + args = parser.parse_args() + ray.connect(args.scheduler_address, args.objstore_address, args.worker_address) + ray.register_module(functions) + worker.main_loop()