mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
This commit is contained in:
parent
55a0f7bb2d
commit
3dc4189d88
3 changed files with 8 additions and 28 deletions
|
@ -48,7 +48,7 @@ class RuntimeEnvPluginSchemaManager:
|
|||
for f in files:
|
||||
if f.endswith(RAY_RUNTIME_ENV_PLUGIN_SCHEMA_SUFFIX):
|
||||
schema_json_files.append(os.path.join(root, f))
|
||||
logger.debug(
|
||||
logger.info(
|
||||
f"Loading the default runtime env schemas: {schema_json_files}."
|
||||
)
|
||||
cls._load_schemas(schema_json_files)
|
||||
|
|
|
@ -42,11 +42,6 @@ class Result:
|
|||
log_dir: Optional[Path]
|
||||
metrics_dataframe: Optional[pd.DataFrame]
|
||||
best_checkpoints: Optional[List[Tuple[Checkpoint, Dict[str, Any]]]]
|
||||
_items_to_repr = ["metrics", "error", "log_dir"]
|
||||
|
||||
from ray.tune.result import AUTO_RESULT_KEYS
|
||||
|
||||
_metrics_to_hide = AUTO_RESULT_KEYS
|
||||
|
||||
@property
|
||||
def config(self) -> Optional[Dict[str, Any]]:
|
||||
|
@ -54,12 +49,3 @@ class Result:
|
|||
if not self.metrics:
|
||||
return None
|
||||
return self.metrics.get("config", None)
|
||||
|
||||
def __repr__(self):
|
||||
shown_attributes = {k: self.__dict__[k] for k in self._items_to_repr}
|
||||
if self._metrics_to_hide and self.metrics:
|
||||
shown_attributes["metrics"] = {
|
||||
k: v for k, v in self.metrics.items() if k not in self._metrics_to_hide
|
||||
}
|
||||
kws = [f"{key}={value!r}" for key, value in shown_attributes.items()]
|
||||
return "{}({})".format(type(self).__name__, ", ".join(kws))
|
||||
|
|
|
@ -18,8 +18,6 @@ if TYPE_CHECKING:
|
|||
|
||||
from ray.data.preprocessor import Preprocessor
|
||||
|
||||
_WARN_REPARTITION_THRESHOLD = 10 * 1024 ** 3
|
||||
|
||||
|
||||
def _convert_scaling_config_to_ray_params(
|
||||
scaling_config: ScalingConfig,
|
||||
|
@ -168,17 +166,13 @@ class GBDTTrainer(BaseTrainer):
|
|||
# TODO: Move this logic to the respective libraries
|
||||
for dataset_key, dataset in self.datasets.items():
|
||||
if dataset.num_blocks() < self._ray_params.num_actors:
|
||||
if dataset.size_bytes() > _WARN_REPARTITION_THRESHOLD:
|
||||
warnings.warn(
|
||||
f"Dataset '{dataset_key}' has {dataset.num_blocks()} blocks, "
|
||||
f"which is less than the `num_workers` "
|
||||
f"{self._ray_params.num_actors}. "
|
||||
f"This dataset will be automatically repartitioned to "
|
||||
f"{self._ray_params.num_actors} blocks. You can disable "
|
||||
"this error message by partitioning the dataset "
|
||||
"to have blocks >= number of workers via "
|
||||
"`dataset.repartition(num_workers)`."
|
||||
)
|
||||
warnings.warn(
|
||||
f"Dataset '{dataset_key}' has {dataset.num_blocks()} blocks, "
|
||||
f"which is less than the `num_workers` "
|
||||
f"{self._ray_params.num_actors}. "
|
||||
f"This dataset will be automatically repartitioned to "
|
||||
f"{self._ray_params.num_actors} blocks."
|
||||
)
|
||||
self.datasets[dataset_key] = dataset.repartition(
|
||||
self._ray_params.num_actors
|
||||
)
|
||||
|
|
Loading…
Add table
Reference in a new issue