mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
[RLlib] Config dict should use true instad of True in docs/examples. (#17889)
This commit is contained in:
parent
8227e24424
commit
1dbe7fc26a
3 changed files with 5 additions and 5 deletions
|
@ -423,8 +423,8 @@ Building Policies in TensorFlow Eager
|
|||
|
||||
Policies built with ``build_tf_policy`` (most of the reference algorithms are)
|
||||
can be run in eager mode by setting
|
||||
the ``"framework": "tf2"`` / ``"eager_tracing": True`` config options or
|
||||
using ``rllib train '{"framework": "tf2", "eager_tracing": True}'``.
|
||||
the ``"framework": "tf2"`` / ``"eager_tracing": true`` config options or
|
||||
using ``rllib train '{"framework": "tf2", "eager_tracing": true}'``.
|
||||
This will tell RLlib to execute the model forward pass, action distribution,
|
||||
loss, and stats functions in eager mode.
|
||||
|
||||
|
|
|
@ -19,7 +19,7 @@ You can train a simple DQN trainer with the following command:
|
|||
|
||||
.. code-block:: bash
|
||||
|
||||
rllib train --run DQN --env CartPole-v0 # --config '{"framework": "tf2", "eager_tracing": True}' for eager execution
|
||||
rllib train --run DQN --env CartPole-v0 # --config '{"framework": "tf2", "eager_tracing": true}' for eager execution
|
||||
|
||||
By default, the results will be logged to a subdirectory of ``~/ray_results``.
|
||||
This subdirectory will contain a file ``params.json`` which contains the
|
||||
|
@ -947,7 +947,7 @@ Eager Mode
|
|||
|
||||
Policies built with ``build_tf_policy`` (most of the reference algorithms are)
|
||||
can be run in eager mode by setting the
|
||||
``"framework": "[tf2|tfe]"`` / ``"eager_tracing": True`` config options or using
|
||||
``"framework": "[tf2|tfe]"`` / ``"eager_tracing": true`` config options or using
|
||||
``rllib train --config '{"framework": "tf2"}' [--trace]``.
|
||||
This will tell RLlib to execute the model forward pass, action distribution,
|
||||
loss, and stats functions in eager mode.
|
||||
|
|
|
@ -32,7 +32,7 @@ Then, you can try out training in the following equivalent ways:
|
|||
.. code-block:: bash
|
||||
|
||||
rllib train --run=PPO --env=CartPole-v0 # -v [-vv] for verbose,
|
||||
# --config='{"framework": "tf2", "eager_tracing": True}' for eager,
|
||||
# --config='{"framework": "tf2", "eager_tracing": true}' for eager,
|
||||
# --torch to use PyTorch OR --config='{"framework": "torch"}'
|
||||
|
||||
.. code-block:: python
|
||||
|
|
Loading…
Add table
Reference in a new issue