mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
[autoscaler] Usability improvements in logging (#10764)
This commit is contained in:
parent
d0b73647b4
commit
00fefba72c
8 changed files with 168 additions and 14 deletions
158
python/ray/autoscaler/aws/example-ml.yaml
Normal file
158
python/ray/autoscaler/aws/example-ml.yaml
Normal file
|
@ -0,0 +1,158 @@
|
|||
# A cluster setup for ML / RLlib workloads. Note that this uses pytorch by default.
|
||||
# If you want to use tensorflow, change pytorch_p36 to tensorflow_p36 below.
|
||||
#
|
||||
# Important: Make sure to run "source activate pytorch_p36" in your sessions to
|
||||
# activate the right conda environment. Otherwise you won't be able to import ray.
|
||||
#
|
||||
cluster_name: ml
|
||||
|
||||
# The minimum number of workers nodes to launch in addition to the head
|
||||
# node. This number should be >= 0.
|
||||
min_workers: 0
|
||||
|
||||
# The maximum number of workers nodes to launch in addition to the head
|
||||
# node. This takes precedence over min_workers.
|
||||
max_workers: 0
|
||||
|
||||
# The initial number of worker nodes to launch in addition to the head
|
||||
# node. When the cluster is first brought up (or when it is refreshed with a
|
||||
# subsequent `ray up`) this number of nodes will be started.
|
||||
initial_workers: 0
|
||||
|
||||
# Whether or not to autoscale aggressively. If this is enabled, if at any point
|
||||
# we would start more workers, we start at least enough to bring us to
|
||||
# initial_workers.
|
||||
autoscaling_mode: default
|
||||
|
||||
# This executes all commands on all nodes in the docker container,
|
||||
# and opens all the necessary ports to support the Ray cluster.
|
||||
# Empty string means disabled.
|
||||
docker:
|
||||
image: "" # e.g., rayproject/ray:0.8.7
|
||||
container_name: "" # e.g. ray_docker
|
||||
# If true, pulls latest version of image. Otherwise, `docker run` will only pull the image
|
||||
# if no cached version is present.
|
||||
pull_before_run: True
|
||||
run_options: [] # Extra options to pass into "docker run"
|
||||
|
||||
# Example of running a GPU head with CPU workers
|
||||
# head_image: "rayproject/ray:0.8.7-gpu"
|
||||
# head_run_options:
|
||||
# - --runtime=nvidia
|
||||
|
||||
# worker_image: "rayproject/ray:0.8.7"
|
||||
# worker_run_options: []
|
||||
|
||||
# The autoscaler will scale up the cluster to this target fraction of resource
|
||||
# usage. For example, if a cluster of 10 nodes is 100% busy and
|
||||
# target_utilization is 0.8, it would resize the cluster to 13. This fraction
|
||||
# can be decreased to increase the aggressiveness of upscaling.
|
||||
# This max value allowed is 1.0, which is the most conservative setting.
|
||||
target_utilization_fraction: 0.8
|
||||
|
||||
# If a node is idle for this many minutes, it will be removed.
|
||||
idle_timeout_minutes: 5
|
||||
|
||||
# Cloud-provider specific configuration.
|
||||
provider:
|
||||
type: aws
|
||||
region: us-west-2
|
||||
# Availability zone(s), comma-separated, that nodes may be launched in.
|
||||
# Nodes are currently spread between zones by a round-robin approach,
|
||||
# however this implementation detail should not be relied upon.
|
||||
availability_zone: us-west-2a,us-west-2b
|
||||
# Whether to allow node reuse. If set to False, nodes will be terminated
|
||||
# instead of stopped.
|
||||
cache_stopped_nodes: True # If not present, the default is True.
|
||||
|
||||
# How Ray will authenticate with newly launched nodes.
|
||||
auth:
|
||||
ssh_user: ubuntu
|
||||
# By default Ray creates a new private keypair, but you can also use your own.
|
||||
# If you do so, make sure to also set "KeyName" in the head and worker node
|
||||
# configurations below.
|
||||
# ssh_private_key: /path/to/your/key.pem
|
||||
|
||||
# Provider-specific config for the head node, e.g. instance type. By default
|
||||
# Ray will auto-configure unspecified fields such as SubnetId and KeyName.
|
||||
# For more documentation on available fields, see:
|
||||
# http://boto3.readthedocs.io/en/latest/reference/services/ec2.html#EC2.ServiceResource.create_instances
|
||||
head_node:
|
||||
InstanceType: m4.16xlarge
|
||||
ImageId: latest_dlami
|
||||
|
||||
# You can provision additional disk space with a conf as follows
|
||||
BlockDeviceMappings:
|
||||
- DeviceName: /dev/sda1
|
||||
Ebs:
|
||||
VolumeSize: 100
|
||||
|
||||
# Additional options in the boto docs.
|
||||
|
||||
# Provider-specific config for worker nodes, e.g. instance type. By default
|
||||
# Ray will auto-configure unspecified fields such as SubnetId and KeyName.
|
||||
# For more documentation on available fields, see:
|
||||
# http://boto3.readthedocs.io/en/latest/reference/services/ec2.html#EC2.ServiceResource.create_instances
|
||||
worker_nodes:
|
||||
InstanceType: m4.16xlarge
|
||||
ImageId: latest_dlami
|
||||
|
||||
# Comment this in to use spot nodes.
|
||||
# InstanceMarketOptions:
|
||||
# MarketType: spot
|
||||
# # Additional options can be found in the boto docs, e.g.
|
||||
# # SpotOptions:
|
||||
# # MaxPrice: MAX_HOURLY_PRICE
|
||||
#
|
||||
# Additional options in the boto docs.
|
||||
|
||||
# Files or directories to copy to the head and worker nodes. The format is a
|
||||
# dictionary from REMOTE_PATH: LOCAL_PATH, e.g.
|
||||
file_mounts: {
|
||||
# "/path1/on/remote/machine": "/path1/on/local/machine",
|
||||
# "/path2/on/remote/machine": "/path2/on/local/machine",
|
||||
}
|
||||
|
||||
# Files or directories to copy from the head node to the worker nodes. The format is a
|
||||
# list of paths. The same path on the head node will be copied to the worker node.
|
||||
# This behavior is a subset of the file_mounts behavior. In the vast majority of cases
|
||||
# you should just use file_mounts. Only use this if you know what you're doing!
|
||||
cluster_synced_files: []
|
||||
|
||||
# Whether changes to directories in file_mounts or cluster_synced_files in the head node
|
||||
# should sync to the worker node continuously
|
||||
file_mounts_sync_continuously: False
|
||||
|
||||
# List of commands that will be run before `setup_commands`. If docker is
|
||||
# enabled, these commands will run outside the container and before docker
|
||||
# is setup.
|
||||
initialization_commands: []
|
||||
|
||||
# List of shell commands to run to set up nodes.
|
||||
setup_commands:
|
||||
# Note: if you're developing Ray, you probably want to create an AMI that
|
||||
# has your Ray repo pre-cloned. Then, you can replace the pip installs
|
||||
# below with a git checkout <your_sha> (and possibly a recompile).
|
||||
- source activate pytorch_p36 && pip install -U ray
|
||||
- source activate pytorch_p36 && pip install -U ray[rllib] ray[tune] ray[debug]
|
||||
# Consider uncommenting these if you also want to run apt-get commands during setup
|
||||
# - sudo pkill -9 apt-get || true
|
||||
# - sudo pkill -9 dpkg || true
|
||||
# - sudo dpkg --configure -a
|
||||
|
||||
# Custom commands that will be run on the head node after common setup.
|
||||
head_setup_commands:
|
||||
- pip install boto3>=1.4.8 # 1.4.8 adds InstanceMarketOptions
|
||||
|
||||
# Custom commands that will be run on worker nodes after common setup.
|
||||
worker_setup_commands: []
|
||||
|
||||
# Command to start ray on the head node. You don't need to change this.
|
||||
head_start_ray_commands:
|
||||
- source activate pytorch_p36 && ray stop
|
||||
- ulimit -n 65536; source activate pytorch_p36 && ray start --head --port=6379 --object-manager-port=8076 --autoscaling-config=~/ray_bootstrap_config.yaml
|
||||
|
||||
# Command to start ray on worker nodes. You don't need to change this.
|
||||
worker_start_ray_commands:
|
||||
- source activate pytorch_p36 && ray stop
|
||||
- ulimit -n 65536; source activate pytorch_p36 && ray start --address=$RAY_HEAD_IP:6379 --object-manager-port=8076
|
|
@ -698,9 +698,9 @@ class _CliLogger():
|
|||
raise ValueError("Non-interactive confirm without --yes.")
|
||||
|
||||
if default:
|
||||
yn_str = cf.limeGreen("Y") + "/" + cf.red("n")
|
||||
yn_str = "Y/n"
|
||||
else:
|
||||
yn_str = cf.limeGreen("y") + "/" + cf.red("N")
|
||||
yn_str = "y/N"
|
||||
|
||||
confirm_str = cf.underlined("Confirm [" + yn_str + "]:") + " "
|
||||
|
||||
|
|
|
@ -154,8 +154,6 @@ def create_or_update_cluster(config_file: str,
|
|||
raise NotImplementedError("Unsupported provider {}".format(
|
||||
config["provider"]))
|
||||
|
||||
cli_logger.success("Cluster configuration valid")
|
||||
|
||||
printed_overrides = False
|
||||
|
||||
def handle_cli_override(key, override):
|
||||
|
@ -244,8 +242,8 @@ def _bootstrap_config(config: Dict[str, Any],
|
|||
|
||||
provider_cls = importer(config["provider"])
|
||||
|
||||
with cli_logger.timed( # todo: better message
|
||||
"Bootstrapping {} config",
|
||||
with cli_logger.timed(
|
||||
"Checking {} environment settings",
|
||||
PROVIDER_PRETTY_NAMES.get(config["provider"]["type"])):
|
||||
resolved_config = provider_cls.bootstrap_config(config)
|
||||
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
Bootstrapping AWS config
|
||||
Checking AWS environment settings
|
||||
Fetched IP: .+
|
||||
ubuntu@ip-.+:~\$ exit
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
Bootstrapping AWS config
|
||||
Checking AWS environment settings
|
||||
Fetched IP: .+
|
||||
This is a test!
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
Bootstrapping AWS config
|
||||
Checking AWS environment settings
|
||||
Fetched IP: .+
|
||||
Bootstrapping AWS config
|
||||
Checking AWS environment settings
|
||||
Fetched IP: .+
|
||||
This is a test!
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
Cluster configuration valid
|
||||
Cluster: test-cli
|
||||
|
||||
Bootstrapping AWS config
|
||||
Checking AWS environment settings
|
||||
AWS config
|
||||
IAM Profile: .+ \[default\]
|
||||
EC2 Key pair \(head & workers\): .+ \[default\]
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
.+\.py.*Cluster configuration valid
|
||||
.+\.py.*Cluster: test-cli
|
||||
.+\.py.*Bootstrapping AWS config
|
||||
.+\.py.*Checking AWS environment settings
|
||||
.+\.py.*Creating new IAM instance profile ray-autoscaler-v1 for use as the default\.
|
||||
.+\.py.*Creating new IAM role ray-autoscaler-v1 for use as the default instance role\.
|
||||
.+\.py.*Creating new key pair __test-cli_key-1 for use as the default\.
|
||||
|
|
Loading…
Add table
Reference in a new issue