2019-08-06 18:13:16 +00:00
|
|
|
import numpy as np
|
|
|
|
|
2019-04-12 11:39:14 -07:00
|
|
|
from ray.rllib.models.action_dist import ActionDistribution
|
|
|
|
from ray.rllib.utils.annotations import override
|
2019-12-30 15:27:32 -05:00
|
|
|
from ray.rllib.utils import try_import_torch
|
|
|
|
|
|
|
|
torch, nn = try_import_torch()
|
2019-04-12 11:39:14 -07:00
|
|
|
|
|
|
|
|
|
|
|
class TorchDistributionWrapper(ActionDistribution):
|
|
|
|
"""Wrapper class for torch.distributions."""
|
|
|
|
|
2020-02-19 21:18:45 +01:00
|
|
|
def __init_(self, inputs):
|
|
|
|
super().__init__(inputs)
|
|
|
|
# Store the last sample here.
|
|
|
|
self.last_sample = None
|
|
|
|
|
2019-04-12 11:39:14 -07:00
|
|
|
@override(ActionDistribution)
|
|
|
|
def logp(self, actions):
|
|
|
|
return self.dist.log_prob(actions)
|
|
|
|
|
|
|
|
@override(ActionDistribution)
|
|
|
|
def entropy(self):
|
|
|
|
return self.dist.entropy()
|
|
|
|
|
|
|
|
@override(ActionDistribution)
|
|
|
|
def kl(self, other):
|
2019-12-30 15:27:32 -05:00
|
|
|
return torch.distributions.kl.kl_divergence(self.dist, other.dist)
|
2019-04-12 11:39:14 -07:00
|
|
|
|
|
|
|
@override(ActionDistribution)
|
|
|
|
def sample(self):
|
2020-02-19 21:18:45 +01:00
|
|
|
self.last_sample = self.dist.sample()
|
|
|
|
return self.last_sample
|
|
|
|
|
|
|
|
@override(ActionDistribution)
|
|
|
|
def sampled_action_logp(self):
|
|
|
|
assert self.last_sample is not None
|
|
|
|
return self.logp(self.last_sample)
|
2019-04-12 11:39:14 -07:00
|
|
|
|
|
|
|
|
|
|
|
class TorchCategorical(TorchDistributionWrapper):
|
|
|
|
"""Wrapper class for PyTorch Categorical distribution."""
|
|
|
|
|
|
|
|
@override(ActionDistribution)
|
2019-08-10 14:05:12 -07:00
|
|
|
def __init__(self, inputs, model):
|
2020-02-19 21:18:45 +01:00
|
|
|
super().__init__(inputs, model)
|
2019-04-12 11:39:14 -07:00
|
|
|
self.dist = torch.distributions.categorical.Categorical(logits=inputs)
|
2019-08-06 18:13:16 +00:00
|
|
|
|
2020-02-19 21:18:45 +01:00
|
|
|
@override(ActionDistribution)
|
|
|
|
def deterministic_sample(self):
|
|
|
|
return self.dist.probs.argmax(dim=1)
|
|
|
|
|
2019-08-06 18:13:16 +00:00
|
|
|
@staticmethod
|
|
|
|
@override(ActionDistribution)
|
|
|
|
def required_model_output_shape(action_space, model_config):
|
|
|
|
return action_space.n
|
2019-04-12 11:39:14 -07:00
|
|
|
|
|
|
|
|
|
|
|
class TorchDiagGaussian(TorchDistributionWrapper):
|
|
|
|
"""Wrapper class for PyTorch Normal distribution."""
|
|
|
|
|
|
|
|
@override(ActionDistribution)
|
2019-08-10 14:05:12 -07:00
|
|
|
def __init__(self, inputs, model):
|
2020-02-19 21:18:45 +01:00
|
|
|
super().__init__(inputs, model)
|
2019-04-12 11:39:14 -07:00
|
|
|
mean, log_std = torch.chunk(inputs, 2, dim=1)
|
|
|
|
self.dist = torch.distributions.normal.Normal(mean, torch.exp(log_std))
|
|
|
|
|
2020-02-19 21:18:45 +01:00
|
|
|
@override(ActionDistribution)
|
|
|
|
def deterministic_sample(self):
|
|
|
|
return self.dist.mean
|
|
|
|
|
2019-04-12 11:39:14 -07:00
|
|
|
@override(TorchDistributionWrapper)
|
|
|
|
def logp(self, actions):
|
2020-03-02 19:53:19 +01:00
|
|
|
return super().logp(actions).sum(-1)
|
|
|
|
|
|
|
|
@override(TorchDistributionWrapper)
|
|
|
|
def entropy(self):
|
|
|
|
return super().entropy().sum(-1)
|
|
|
|
|
|
|
|
@override(TorchDistributionWrapper)
|
|
|
|
def kl(self, other):
|
|
|
|
return super().kl(other).sum(-1)
|
2019-08-06 18:13:16 +00:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@override(ActionDistribution)
|
|
|
|
def required_model_output_shape(action_space, model_config):
|
|
|
|
return np.prod(action_space.shape) * 2
|