ray/rllib/models/torch/torch_action_dist.py

88 lines
2.5 KiB
Python
Raw Normal View History

import numpy as np
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.utils.annotations import override
from ray.rllib.utils import try_import_torch
torch, nn = try_import_torch()
class TorchDistributionWrapper(ActionDistribution):
"""Wrapper class for torch.distributions."""
def __init_(self, inputs):
super().__init__(inputs)
# Store the last sample here.
self.last_sample = None
@override(ActionDistribution)
def logp(self, actions):
return self.dist.log_prob(actions)
@override(ActionDistribution)
def entropy(self):
return self.dist.entropy()
@override(ActionDistribution)
def kl(self, other):
return torch.distributions.kl.kl_divergence(self.dist, other.dist)
@override(ActionDistribution)
def sample(self):
self.last_sample = self.dist.sample()
return self.last_sample
@override(ActionDistribution)
def sampled_action_logp(self):
assert self.last_sample is not None
return self.logp(self.last_sample)
class TorchCategorical(TorchDistributionWrapper):
"""Wrapper class for PyTorch Categorical distribution."""
@override(ActionDistribution)
def __init__(self, inputs, model):
super().__init__(inputs, model)
self.dist = torch.distributions.categorical.Categorical(logits=inputs)
@override(ActionDistribution)
def deterministic_sample(self):
return self.dist.probs.argmax(dim=1)
@staticmethod
@override(ActionDistribution)
def required_model_output_shape(action_space, model_config):
return action_space.n
class TorchDiagGaussian(TorchDistributionWrapper):
"""Wrapper class for PyTorch Normal distribution."""
@override(ActionDistribution)
def __init__(self, inputs, model):
super().__init__(inputs, model)
mean, log_std = torch.chunk(inputs, 2, dim=1)
self.dist = torch.distributions.normal.Normal(mean, torch.exp(log_std))
@override(ActionDistribution)
def deterministic_sample(self):
return self.dist.mean
@override(TorchDistributionWrapper)
def logp(self, actions):
return super().logp(actions).sum(-1)
@override(TorchDistributionWrapper)
def entropy(self):
return super().entropy().sum(-1)
@override(TorchDistributionWrapper)
def kl(self, other):
return super().kl(other).sum(-1)
@staticmethod
@override(ActionDistribution)
def required_model_output_shape(action_space, model_config):
return np.prod(action_space.shape) * 2