ray/rllib/policy/sample_batch.py

812 lines
28 KiB
Python
Raw Normal View History

import collections
import numpy as np
import sys
import itertools
from typing import Dict, List, Set, Union
from ray.util import log_once
from ray.rllib.utils.annotations import PublicAPI, DeveloperAPI
from ray.rllib.utils.compression import pack, unpack, is_compressed
from ray.rllib.utils.deprecation import deprecation_warning
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.memory import concat_aligned
from ray.rllib.utils.typing import PolicyID, TensorType
tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()
# Default policy id for single agent environments
DEFAULT_POLICY_ID = "default_policy"
@PublicAPI
class SampleBatch(dict):
"""Wrapper around a dictionary with string keys and array-like values.
For example, {"obs": [1, 2, 3], "reward": [0, -1, 1]} is a batch of three
samples, each with an "obs" and "reward" attribute.
"""
# Outputs from interacting with the environment
OBS = "obs"
CUR_OBS = "obs"
NEXT_OBS = "new_obs"
ACTIONS = "actions"
REWARDS = "rewards"
PREV_ACTIONS = "prev_actions"
PREV_REWARDS = "prev_rewards"
DONES = "dones"
INFOS = "infos"
# Extra action fetches keys.
ACTION_DIST_INPUTS = "action_dist_inputs"
ACTION_PROB = "action_prob"
ACTION_LOGP = "action_logp"
# Uniquely identifies an episode.
EPS_ID = "eps_id"
# Uniquely identifies a sample batch. This is important to distinguish RNN
# sequences from the same episode when multiple sample batches are
# concatenated (fusing sequences across batches can be unsafe).
UNROLL_ID = "unroll_id"
# Uniquely identifies an agent within an episode.
AGENT_INDEX = "agent_index"
# Value function predictions emitted by the behaviour policy.
VF_PREDS = "vf_preds"
@PublicAPI
def __init__(self, *args, **kwargs):
"""Constructs a sample batch (same params as dict constructor)."""
# Possible seq_lens (TxB or BxT) setup.
self.time_major = kwargs.pop("_time_major", None)
self.seq_lens = kwargs.pop("_seq_lens", kwargs.pop("seq_lens", None))
if self.seq_lens is None and len(args) > 0 and isinstance(
args[0], dict):
self.seq_lens = args[0].pop("_seq_lens", args[0].pop(
"seq_lens", None))
if isinstance(self.seq_lens, list):
self.seq_lens = np.array(self.seq_lens, dtype=np.int32)
2020-12-21 02:22:32 +01:00
self.dont_check_lens = kwargs.pop("_dont_check_lens", False)
2021-02-25 12:18:11 +01:00
self.max_seq_len = kwargs.pop("_max_seq_len", None)
if self.max_seq_len is None and self.seq_lens is not None and \
not (tf and tf.is_tensor(self.seq_lens)) and \
2021-02-25 12:18:11 +01:00
len(self.seq_lens) > 0:
self.max_seq_len = max(self.seq_lens)
2021-02-25 12:18:11 +01:00
self.zero_padded = kwargs.pop("_zero_padded", False)
self.is_training = kwargs.pop("_is_training", None)
# Call super constructor. This will make the actual data accessible
# by column name (str) via e.g. self["some-col"].
dict.__init__(self, *args, **kwargs)
self.accessed_keys = set()
self.added_keys = set()
self.deleted_keys = set()
self.intercepted_values = {}
self.get_interceptor = None
if self.is_training is None:
self.is_training = self.pop("is_training", False)
lengths = []
copy_ = {k: v for k, v in self.items()}
for k, v in copy_.items():
assert isinstance(k, str), self
len_ = len(v) if isinstance(
v,
(list, np.ndarray)) or (torch and torch.is_tensor(v)) else None
lengths.append(len_)
if isinstance(v, list):
self[k] = np.array(v)
if not lengths:
raise ValueError("Empty sample batch")
2020-12-21 02:22:32 +01:00
if not self.dont_check_lens:
assert len(set(lengths)) == 1, \
"Data columns must be same length, but lens are " \
"{}".format(lengths)
if self.seq_lens is not None and \
not (tf and tf.is_tensor(self.seq_lens)) and \
len(self.seq_lens) > 0:
self.count = sum(self.seq_lens)
else:
self.count = lengths[0]
@PublicAPI
def __len__(self):
"""Returns the amount of samples in the sample batch."""
return self.count
@staticmethod
@PublicAPI
def concat_samples(samples: List["SampleBatch"]) -> \
Union["SampleBatch", "MultiAgentBatch"]:
"""Concatenates n data dicts or MultiAgentBatches.
Args:
samples (List[Dict[TensorType]]]): List of dicts of data (numpy).
Returns:
Union[SampleBatch, MultiAgentBatch]: A new (compressed)
SampleBatch or MultiAgentBatch.
"""
if isinstance(samples[0], MultiAgentBatch):
return MultiAgentBatch.concat_samples(samples)
seq_lens = []
concat_samples = []
2021-02-25 12:18:11 +01:00
zero_padded = samples[0].zero_padded
max_seq_len = samples[0].max_seq_len
for s in samples:
if s.count > 0:
2021-02-25 12:18:11 +01:00
assert s.zero_padded == zero_padded
if zero_padded:
assert s.max_seq_len == max_seq_len
concat_samples.append(s)
if s.seq_lens is not None:
seq_lens.extend(s.seq_lens)
out = {}
for k in concat_samples[0].keys():
out[k] = concat_aligned(
[s[k] for s in concat_samples],
time_major=concat_samples[0].time_major)
return SampleBatch(
out,
_seq_lens=np.array(seq_lens, dtype=np.int32),
2020-12-21 02:22:32 +01:00
_time_major=concat_samples[0].time_major,
2021-02-25 12:18:11 +01:00
_dont_check_lens=True,
_zero_padded=zero_padded,
_max_seq_len=max_seq_len,
)
@PublicAPI
def concat(self, other: "SampleBatch") -> "SampleBatch":
"""Returns a new SampleBatch with each data column concatenated.
Args:
other (SampleBatch): The other SampleBatch object to concat to this
one.
Returns:
SampleBatch: The new SampleBatch, resulting from concating `other`
to `self`.
Examples:
>>> b1 = SampleBatch({"a": [1, 2]})
>>> b2 = SampleBatch({"a": [3, 4, 5]})
>>> print(b1.concat(b2))
{"a": [1, 2, 3, 4, 5]}
"""
if self.keys() != other.keys():
raise ValueError(
"SampleBatches to concat must have same columns! {} vs {}".
format(list(self.keys()), list(other.keys())))
out = {}
for k in self.keys():
out[k] = concat_aligned([self[k], other[k]])
return SampleBatch(out)
@PublicAPI
def copy(self, shallow: bool = False) -> "SampleBatch":
"""Creates a (deep) copy of this SampleBatch and returns it.
Args:
shallow (bool): Whether the copying should be done shallowly.
Returns:
SampleBatch: A (deep) copy of this SampleBatch object.
"""
copy_ = SampleBatch(
{
k: np.array(v, copy=not shallow)
if isinstance(v, np.ndarray) else v
for (k, v) in self.items()
},
2021-02-25 12:18:11 +01:00
_seq_lens=self.seq_lens,
_dont_check_lens=self.dont_check_lens)
copy_.set_get_interceptor(self.get_interceptor)
return copy_
@PublicAPI
def rows(self) -> Dict[str, TensorType]:
"""Returns an iterator over data rows, i.e. dicts with column values.
Yields:
Dict[str, TensorType]: The column values of the row in this
iteration.
Examples:
>>> batch = SampleBatch({"a": [1, 2, 3], "b": [4, 5, 6]})
>>> for row in batch.rows():
print(row)
{"a": 1, "b": 4}
{"a": 2, "b": 5}
{"a": 3, "b": 6}
"""
for i in range(self.count):
row = {}
for k in self.keys():
row[k] = self[k][i]
yield row
@PublicAPI
def columns(self, keys: List[str]) -> List[any]:
"""Returns a list of the batch-data in the specified columns.
Args:
keys (List[str]): List of column names fo which to return the data.
Returns:
List[any]: The list of data items ordered by the order of column
names in `keys`.
Examples:
>>> batch = SampleBatch({"a": [1], "b": [2], "c": [3]})
>>> print(batch.columns(["a", "b"]))
[[1], [2]]
"""
out = []
for k in keys:
out.append(self[k])
return out
@PublicAPI
def shuffle(self) -> None:
"""Shuffles the rows of this batch in-place."""
permutation = np.random.permutation(self.count)
for key, val in self.items():
self[key] = val[permutation]
@PublicAPI
def split_by_episode(self) -> List["SampleBatch"]:
"""Splits this batch's data by `eps_id`.
Returns:
List[SampleBatch]: List of batches, one per distinct episode.
"""
# No eps_id in data -> Make sure there are no "dones" in the middle
# and add eps_id automatically.
if SampleBatch.EPS_ID not in self:
if SampleBatch.DONES in self:
assert not any(self[SampleBatch.DONES][:-1])
self[SampleBatch.EPS_ID] = np.repeat(0, self.count)
return [self]
slices = []
cur_eps_id = self[SampleBatch.EPS_ID][0]
offset = 0
for i in range(self.count):
next_eps_id = self[SampleBatch.EPS_ID][i]
if next_eps_id != cur_eps_id:
slices.append(self.slice(offset, i))
offset = i
cur_eps_id = next_eps_id
slices.append(self.slice(offset, self.count))
for s in slices:
slen = len(set(s[SampleBatch.EPS_ID]))
assert slen == 1, (s, slen)
assert sum(s.count for s in slices) == self.count, (slices, self.count)
return slices
@PublicAPI
def slice(self, start: int, end: int) -> "SampleBatch":
"""Returns a slice of the row data of this batch (w/o copying).
Args:
2021-02-25 12:18:11 +01:00
start (int): Starting index. If < 0, will zero-pad.
end (int): Ending index.
Returns:
SampleBatch: A new SampleBatch, which has a slice of this batch's
data.
"""
2020-12-21 02:22:32 +01:00
if self.seq_lens is not None and len(self.seq_lens) > 0:
2021-02-25 12:18:11 +01:00
if start < 0:
data = {
k: np.concatenate([
np.zeros(
shape=(-start, ) + v.shape[1:], dtype=v.dtype),
v[0:end]
])
for k, v in self.items()
2021-02-25 12:18:11 +01:00
}
else:
data = {k: v[start:end] for k, v in self.items()}
2020-12-21 02:22:32 +01:00
# Fix state_in_x data.
count = 0
state_start = None
seq_lens = None
for i, seq_len in enumerate(self.seq_lens):
count += seq_len
if count >= end:
state_idx = 0
state_key = "state_in_{}".format(state_idx)
2021-02-25 12:18:11 +01:00
if state_start is None:
state_start = i
while state_key in self:
data[state_key] = self[state_key][state_start:i + 1]
2020-12-21 02:22:32 +01:00
state_idx += 1
state_key = "state_in_{}".format(state_idx)
seq_lens = list(self.seq_lens[state_start:i]) + [
seq_len - (count - end)
]
2021-02-25 12:18:11 +01:00
if start < 0:
seq_lens[0] += -start
2020-12-21 02:22:32 +01:00
assert sum(seq_lens) == (end - start)
break
elif state_start is None and count > start:
state_start = i
return SampleBatch(
2020-12-21 02:22:32 +01:00
data,
_seq_lens=np.array(seq_lens, dtype=np.int32),
_time_major=self.time_major,
_dont_check_lens=True)
else:
return SampleBatch(
{k: v[start:end]
for k, v in self.items()},
_seq_lens=None,
_is_training=self.is_training,
_time_major=self.time_major)
@PublicAPI
def timeslices(self, k: int) -> List["SampleBatch"]:
"""Returns SampleBatches, each one representing a k-slice of this one.
Will start from timestep 0 and produce slices of size=k.
Args:
k (int): The size (in timesteps) of each returned SampleBatch.
Returns:
List[SampleBatch]: The list of (new) SampleBatches (each one of
size k).
"""
2021-02-25 12:18:11 +01:00
slices = self._get_slice_indices(k)
timeslices = [self.slice(i, j) for i, j in slices]
return timeslices
def zero_pad(self, max_seq_len: int, exclude_states: bool = True):
"""Left zero-pad the data in this SampleBatch in place.
This will set the `self.zero_padded` flag to True and
`self.max_seq_len` to the given `max_seq_len` value.
Args:
max_len (int): The max (total) length to zero pad to.
exclude_states (bool): If False, also zero-pad all `state_in_x`
data. If False, leave `state_in_x` keys as-is.
"""
for col in self.keys():
2021-02-25 12:18:11 +01:00
# Skip state in columns.
if exclude_states is True and col.startswith("state_in_"):
continue
f = self[col]
2021-02-25 12:18:11 +01:00
# Save unnecessary copy.
if not isinstance(f, np.ndarray):
f = np.array(f)
# Already good length, can skip.
if f.shape[0] == max_seq_len:
continue
# Generate zero-filled primer of len=max_seq_len.
length = len(self.seq_lens) * max_seq_len
if f.dtype == np.object or f.dtype.type is np.str_:
f_pad = [None] * length
else:
# Make sure type doesn't change.
f_pad = np.zeros((length, ) + np.shape(f)[1:], dtype=f.dtype)
# Fill primer with data.
f_pad_base = f_base = 0
for len_ in self.seq_lens:
f_pad[f_pad_base:f_pad_base + len_] = f[f_base:f_base + len_]
f_pad_base += max_seq_len
f_base += len_
assert f_base == len(f), f
# Update our data.
self[col] = f_pad
2021-02-25 12:18:11 +01:00
# Set flags to indicate, we are now zero-padded (and to what extend).
self.zero_padded = True
self.max_seq_len = max_seq_len
@PublicAPI
def size_bytes(self) -> int:
"""
Returns:
int: The overall size in bytes of the data buffer (all columns).
"""
return sum(
v.nbytes if isinstance(v, np.ndarray) else sys.getsizeof(v)
for v in self.values())
def get(self, key, default=None):
try:
return self.__getitem__(key)
except KeyError:
return default
@PublicAPI
def __getitem__(self, key: str) -> TensorType:
"""Returns one column (by key) from the data.
Args:
key (str): The key (column name) to return.
Returns:
TensorType: The data under the given key.
"""
if not hasattr(self, key):
self.accessed_keys.add(key)
# Backward compatibility for when "input-dicts" were used.
if key == "is_training":
if log_once("SampleBatch['is_training']"):
deprecation_warning(
old="SampleBatch['is_training']",
new="SampleBatch.is_training",
error=False)
return self.is_training
elif key == "seq_lens":
if self.get_interceptor is not None and self.seq_lens is not None:
if "seq_lens" not in self.intercepted_values:
self.intercepted_values["seq_lens"] = self.get_interceptor(
self.seq_lens)
return self.intercepted_values["seq_lens"]
return self.seq_lens
value = dict.__getitem__(self, key)
if self.get_interceptor is not None:
if key not in self.intercepted_values:
self.intercepted_values[key] = self.get_interceptor(value)
value = self.intercepted_values[key]
return value
@PublicAPI
def __setitem__(self, key, item) -> None:
"""Inserts (overrides) an entire column (by key) in the data buffer.
Args:
key (str): The column name to set a value for.
item (TensorType): The data to insert.
"""
if key == "seq_lens":
self.seq_lens = item
return
# Defend against creating SampleBatch via pickle (no property
# `added_keys` and first item is already set).
elif not hasattr(self, "added_keys"):
dict.__setitem__(self, key, item)
return
if key not in self:
self.added_keys.add(key)
dict.__setitem__(self, key, item)
if key in self.intercepted_values:
self.intercepted_values[key] = item
@PublicAPI
def __delitem__(self, key):
self.deleted_keys.add(key)
dict.__delitem__(self, key)
@DeveloperAPI
def compress(self,
bulk: bool = False,
columns: Set[str] = frozenset(["obs", "new_obs"])) -> None:
"""Compresses the data buffers (by column) in place.
Args:
bulk (bool): Whether to compress across the batch dimension (0)
as well. If False will compress n separate list items, where n
is the batch size.
columns (Set[str]): The columns to compress. Default: Only
compress the obs and new_obs columns.
"""
for key in columns:
if key in self.keys():
if bulk:
self[key] = pack(self[key])
else:
self[key] = np.array([pack(o) for o in self[key]])
@DeveloperAPI
def decompress_if_needed(self,
columns: Set[str] = frozenset(
["obs", "new_obs"])) -> "SampleBatch":
"""Decompresses data buffers (per column if not compressed) in place.
Args:
columns (Set[str]): The columns to decompress. Default: Only
decompress the obs and new_obs columns.
Returns:
SampleBatch: This very SampleBatch.
"""
for key in columns:
if key in self.keys():
arr = self[key]
if is_compressed(arr):
self[key] = unpack(arr)
elif len(arr) > 0 and is_compressed(arr[0]):
self[key] = np.array([unpack(o) for o in self[key]])
return self
@DeveloperAPI
def set_get_interceptor(self, fn):
self.get_interceptor = fn
def __repr__(self):
return "SampleBatch({})".format(list(self.keys()))
2021-02-25 12:18:11 +01:00
def _get_slice_indices(self, slice_size):
i = 0
slices = []
if self.seq_lens is not None and len(self.seq_lens) > 0:
assert np.all(self.seq_lens < slice_size), \
"ERROR: `slice_size` must be larger than the max. seq-len " \
"in the batch!"
2021-02-25 12:18:11 +01:00
start_pos = 0
current_slize_size = 0
idx = 0
while idx < len(self.seq_lens):
seq_len = self.seq_lens[idx]
current_slize_size += seq_len
# Complete minibatch -> Append to slices.
if current_slize_size >= slice_size:
slices.append((start_pos, start_pos + slice_size))
start_pos += slice_size
if current_slize_size > slice_size:
overhead = current_slize_size - slice_size
start_pos -= (seq_len - overhead)
idx -= 1
current_slize_size = 0
idx += 1
else:
while i < self.count:
slices.append((i, i + slice_size))
i += slice_size
return slices
# TODO: deprecate
@property
def data(self):
if log_once("SampleBatch.data"):
deprecation_warning(
old="SampleBatch.data[..]", new="SampleBatch[..]", error=False)
return self
@PublicAPI
class MultiAgentBatch:
"""A batch of experiences from multiple agents in the environment.
Attributes:
policy_batches (Dict[PolicyID, SampleBatch]): Mapping from policy
ids to SampleBatches of experiences.
count (int): The number of env steps in this batch.
"""
@PublicAPI
def __init__(self, policy_batches: Dict[PolicyID, SampleBatch],
env_steps: int):
"""Initialize a MultiAgentBatch object.
Args:
policy_batches (Dict[PolicyID, SampleBatch]): Mapping from policy
ids to SampleBatches of experiences.
env_steps (int): The number of environment steps in the environment
this batch contains. This will be less than the number of
transitions this batch contains across all policies in total.
"""
for v in policy_batches.values():
assert isinstance(v, SampleBatch)
self.policy_batches = policy_batches
# Called "count" for uniformity with SampleBatch.
# Prefer to access this via the `env_steps()` method when possible
# for clarity.
self.count = env_steps
@PublicAPI
def env_steps(self) -> int:
"""The number of env steps (there are >= 1 agent steps per env step).
Returns:
int: The number of environment steps contained in this batch.
"""
return self.count
@PublicAPI
def agent_steps(self) -> int:
"""The number of agent steps (there are >= 1 agent steps per env step).
Returns:
int: The number of agent steps total in this batch.
"""
ct = 0
for batch in self.policy_batches.values():
ct += batch.count
return ct
@PublicAPI
def timeslices(self, k: int) -> List["MultiAgentBatch"]:
"""Returns k-step batches holding data for each agent at those steps.
For examples, suppose we have agent1 observations [a1t1, a1t2, a1t3],
for agent2, [a2t1, a2t3], and for agent3, [a3t3] only.
Calling timeslices(1) would return three MultiAgentBatches containing
[a1t1, a2t1], [a1t2], and [a1t3, a2t3, a3t3].
Calling timeslices(2) would return two MultiAgentBatches containing
[a1t1, a1t2, a2t1], and [a1t3, a2t3, a3t3].
This method is used to implement "lockstep" replay mode. Note that this
method does not guarantee each batch contains only data from a single
unroll. Batches might contain data from multiple different envs.
"""
from ray.rllib.evaluation.sample_batch_builder import \
SampleBatchBuilder
# Build a sorted set of (eps_id, t, policy_id, data...)
steps = []
for policy_id, batch in self.policy_batches.items():
for row in batch.rows():
steps.append((row[SampleBatch.EPS_ID], row["t"],
row["agent_index"], policy_id, row))
steps.sort()
finished_slices = []
cur_slice = collections.defaultdict(SampleBatchBuilder)
cur_slice_size = 0
def finish_slice():
nonlocal cur_slice_size
assert cur_slice_size > 0
batch = MultiAgentBatch(
{k: v.build_and_reset()
for k, v in cur_slice.items()}, cur_slice_size)
cur_slice_size = 0
finished_slices.append(batch)
# For each unique env timestep.
for _, group in itertools.groupby(steps, lambda x: x[:2]):
# Accumulate into the current slice.
for _, _, _, policy_id, row in group:
cur_slice[policy_id].add_values(**row)
cur_slice_size += 1
# Slice has reached target number of env steps.
if cur_slice_size >= k:
finish_slice()
assert cur_slice_size == 0
if cur_slice_size > 0:
finish_slice()
assert len(finished_slices) > 0, finished_slices
return finished_slices
@staticmethod
@PublicAPI
def wrap_as_needed(
policy_batches: Dict[PolicyID, SampleBatch],
env_steps: int) -> Union[SampleBatch, "MultiAgentBatch"]:
"""Returns SampleBatch or MultiAgentBatch, depending on given policies.
Args:
policy_batches (Dict[PolicyID, SampleBatch]): Mapping from policy
ids to SampleBatch.
env_steps (int): Number of env steps in the batch.
Returns:
Union[SampleBatch, MultiAgentBatch]: The single default policy's
SampleBatch or a MultiAgentBatch (more than one policy).
"""
if len(policy_batches) == 1 and DEFAULT_POLICY_ID in policy_batches:
return policy_batches[DEFAULT_POLICY_ID]
return MultiAgentBatch(
policy_batches=policy_batches, env_steps=env_steps)
@staticmethod
@PublicAPI
def concat_samples(samples: List["MultiAgentBatch"]) -> "MultiAgentBatch":
"""Concatenates a list of MultiAgentBatches into a new MultiAgentBatch.
Args:
samples (List[MultiAgentBatch]): List of MultiagentBatch objects
to concatenate.
Returns:
MultiAgentBatch: A new MultiAgentBatch consisting of the
concatenated inputs.
"""
policy_batches = collections.defaultdict(list)
env_steps = 0
for s in samples:
if not isinstance(s, MultiAgentBatch):
raise ValueError(
"`MultiAgentBatch.concat_samples()` can only concat "
"MultiAgentBatch types, not {}!".format(type(s).__name__))
for key, batch in s.policy_batches.items():
policy_batches[key].append(batch)
env_steps += s.env_steps()
out = {}
for key, batches in policy_batches.items():
out[key] = SampleBatch.concat_samples(batches)
return MultiAgentBatch(out, env_steps)
@PublicAPI
def copy(self) -> "MultiAgentBatch":
"""Deep-copies self into a new MultiAgentBatch.
Returns:
MultiAgentBatch: The copy of self with deep-copied data.
"""
return MultiAgentBatch(
{k: v.copy()
for (k, v) in self.policy_batches.items()}, self.count)
@PublicAPI
def size_bytes(self) -> int:
"""
Returns:
int: The overall size in bytes of all policy batches (all columns).
"""
return sum(b.size_bytes() for b in self.policy_batches.values())
@DeveloperAPI
def compress(self,
bulk: bool = False,
columns: Set[str] = frozenset(["obs", "new_obs"])) -> None:
"""Compresses each policy batch (per column) in place.
Args:
bulk (bool): Whether to compress across the batch dimension (0)
as well. If False will compress n separate list items, where n
is the batch size.
columns (Set[str]): Set of column names to compress.
"""
for batch in self.policy_batches.values():
batch.compress(bulk=bulk, columns=columns)
@DeveloperAPI
def decompress_if_needed(self,
columns: Set[str] = frozenset(
["obs", "new_obs"])) -> "MultiAgentBatch":
"""Decompresses each policy batch (per column), if already compressed.
Args:
columns (Set[str]): Set of column names to decompress.
Returns:
MultiAgentBatch: This very MultiAgentBatch.
"""
for batch in self.policy_batches.values():
batch.decompress_if_needed(columns)
return self
def __str__(self):
return "MultiAgentBatch({}, env_steps={})".format(
str(self.policy_batches), self.count)
def __repr__(self):
return "MultiAgentBatch({}, env_steps={})".format(
str(self.policy_batches), self.count)