ray/rllib/examples/batch_norm_model.py

51 lines
1.5 KiB
Python
Raw Normal View History

"""Example of using a custom model with batch norm."""
import argparse
import ray
from ray import tune
from ray.rllib.examples.models.batch_norm_model import BatchNormModel, \
TorchBatchNormModel
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check_learning_achieved
tf = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument("--run", type=str, default="PPO")
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--torch", action="store_true")
parser.add_argument("--stop-iters", type=int, default=200)
parser.add_argument("--stop-timesteps", type=int, default=100000)
parser.add_argument("--stop-reward", type=float, default=150)
if __name__ == "__main__":
args = parser.parse_args()
ray.init(local_mode=True)
ModelCatalog.register_custom_model(
"bn_model", TorchBatchNormModel if args.torch else BatchNormModel)
config = {
"env": "Pendulum-v0" if args.run == "DDPG" else "CartPole-v0",
"model": {
"custom_model": "bn_model",
},
"num_workers": 0,
"framework": "torch" if args.torch else "tf",
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.run(args.run, stop=stop, config=config)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()