2020-05-27 16:19:13 +02:00
|
|
|
import unittest
|
|
|
|
|
|
|
|
import ray
|
|
|
|
import ray.rllib.agents.a3c as a3c
|
2021-10-25 10:39:35 +03:00
|
|
|
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
|
|
|
|
from ray.rllib.utils.metrics.learner_info import LEARNER_INFO, \
|
|
|
|
LEARNER_STATS_KEY
|
2020-06-13 17:51:50 +02:00
|
|
|
from ray.rllib.utils.test_utils import check_compute_single_action, \
|
2021-09-30 16:39:05 +02:00
|
|
|
check_train_results, framework_iterator
|
2020-05-27 16:19:13 +02:00
|
|
|
|
|
|
|
|
|
|
|
class TestA3C(unittest.TestCase):
|
|
|
|
"""Sanity tests for A2C exec impl."""
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
ray.init(num_cpus=4)
|
|
|
|
|
|
|
|
def tearDown(self):
|
|
|
|
ray.shutdown()
|
|
|
|
|
|
|
|
def test_a3c_compilation(self):
|
|
|
|
"""Test whether an A3CTrainer can be built with both frameworks."""
|
|
|
|
config = a3c.DEFAULT_CONFIG.copy()
|
|
|
|
config["num_workers"] = 2
|
|
|
|
config["num_envs_per_worker"] = 2
|
|
|
|
|
|
|
|
num_iterations = 1
|
|
|
|
|
|
|
|
# Test against all frameworks.
|
2021-01-18 19:29:03 +01:00
|
|
|
for _ in framework_iterator(config):
|
2021-08-16 22:01:01 +02:00
|
|
|
for env in ["CartPole-v1", "Pendulum-v0", "PongDeterministic-v0"]:
|
2020-09-05 13:14:24 +02:00
|
|
|
print("env={}".format(env))
|
2021-08-16 22:01:01 +02:00
|
|
|
config["model"]["use_lstm"] = env == "CartPole-v1"
|
2020-05-27 16:19:13 +02:00
|
|
|
trainer = a3c.A3CTrainer(config=config, env=env)
|
|
|
|
for i in range(num_iterations):
|
|
|
|
results = trainer.train()
|
2021-09-30 16:39:05 +02:00
|
|
|
check_train_results(results)
|
2020-05-27 16:19:13 +02:00
|
|
|
print(results)
|
2021-08-16 22:01:01 +02:00
|
|
|
check_compute_single_action(
|
|
|
|
trainer, include_state=config["model"]["use_lstm"])
|
2020-07-08 16:12:20 +02:00
|
|
|
trainer.stop()
|
2020-05-27 16:19:13 +02:00
|
|
|
|
2021-10-25 10:39:35 +03:00
|
|
|
def test_a3c_entropy_coeff_schedule(self):
|
|
|
|
"""Test A3CTrainer entropy coeff schedule support."""
|
|
|
|
config = a3c.DEFAULT_CONFIG.copy()
|
|
|
|
config["num_workers"] = 1
|
|
|
|
config["num_envs_per_worker"] = 1
|
|
|
|
config["train_batch_size"] = 20
|
|
|
|
config["batch_mode"] = "truncate_episodes"
|
|
|
|
config["rollout_fragment_length"] = 10
|
|
|
|
config["timesteps_per_iteration"] = 20
|
|
|
|
# 0 metrics reporting delay, this makes sure timestep,
|
|
|
|
# which entropy coeff depends on, is updated after each worker rollout.
|
|
|
|
config["min_iter_time_s"] = 0
|
|
|
|
# Initial lr, doesn't really matter because of the schedule below.
|
|
|
|
config["entropy_coeff"] = 0.01
|
|
|
|
schedule = [
|
|
|
|
[0, 0.01],
|
|
|
|
[60, 0.001],
|
|
|
|
[120, 0.0001],
|
|
|
|
]
|
|
|
|
config["entropy_coeff_schedule"] = schedule
|
|
|
|
|
|
|
|
def _step_n_times(trainer, n: int):
|
|
|
|
"""Step trainer n times.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
learning rate at the end of the execution.
|
|
|
|
"""
|
|
|
|
for _ in range(n):
|
|
|
|
results = trainer.train()
|
|
|
|
return results["info"][LEARNER_INFO][DEFAULT_POLICY_ID][
|
|
|
|
LEARNER_STATS_KEY]["entropy_coeff"]
|
|
|
|
|
|
|
|
# Test against all frameworks.
|
|
|
|
for _ in framework_iterator(config):
|
|
|
|
trainer = a3c.A3CTrainer(config=config, env="CartPole-v1")
|
|
|
|
|
|
|
|
coeff = _step_n_times(trainer, 3) # 60 timesteps
|
|
|
|
# PiecewiseSchedule does interpolation. So roughly 0.001 here.
|
|
|
|
self.assertLessEqual(coeff, 0.005)
|
|
|
|
self.assertGreaterEqual(coeff, 0.0005)
|
|
|
|
|
|
|
|
coeff = _step_n_times(trainer, 3) # 120 timesteps
|
|
|
|
# PiecewiseSchedule does interpolation. So roughly 0.0001 here.
|
|
|
|
self.assertLessEqual(coeff, 0.0005)
|
|
|
|
self.assertGreaterEqual(coeff, 0.00005)
|
|
|
|
|
|
|
|
trainer.stop()
|
|
|
|
|
2020-05-27 16:19:13 +02:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import pytest
|
|
|
|
import sys
|
|
|
|
sys.exit(pytest.main(["-v", __file__]))
|