ray/rllib/utils/framework.py

165 lines
4.4 KiB
Python
Raw Normal View History

import logging
import os
from typing import Any
logger = logging.getLogger(__name__)
# Represents a generic tensor type.
TensorType = Any
def check_framework(framework="tf"):
"""
Checks, whether the given framework is "valid", meaning, whether all
necessary dependencies are installed. Errors otherwise.
Args:
framework (str): Once of "tf", "torch", or None.
Returns:
str: The input framework string.
"""
if framework == "tf":
if tf is None:
raise ImportError("Could not import tensorflow.")
elif framework == "torch":
if torch is None:
raise ImportError("Could not import torch.")
else:
assert framework is None
return framework
def try_import_tf(error=False):
"""
Args:
error (bool): Whether to raise an error if tf cannot be imported.
Returns:
The tf module (either from tf2.0.compat.v1 OR as tf1.x.
"""
# TODO(sven): Make sure, these are reset after each test case
# that uses them.
if "RLLIB_TEST_NO_TF_IMPORT" in os.environ:
logger.warning("Not importing TensorFlow for test purposes")
return None
try:
if "TF_CPP_MIN_LOG_LEVEL" not in os.environ:
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow.compat.v1 as tf
tf.logging.set_verbosity(tf.logging.ERROR)
tf.disable_v2_behavior()
return tf
except ImportError:
try:
import tensorflow as tf
return tf
except ImportError as e:
if error:
raise e
return None
def tf_function(tf_module):
"""Conditional decorator for @tf.function.
Use @tf_function(tf) instead to avoid errors if tf is not installed."""
# The actual decorator to use (pass in `tf` (which could be None)).
def decorator(func):
# If tf not installed -> return function as is (won't be used anyways).
[RLlib] Policy.compute_log_likelihoods() and SAC refactor. (issue #7107) (#7124) * Exploration API (+EpsilonGreedy sub-class). * Exploration API (+EpsilonGreedy sub-class). * Cleanup/LINT. * Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents). * Add `error` option to deprecation_warning(). * WIP. * Bug fix: Get exploration-info for tf framework. Bug fix: Properly deprecate some DQN config keys. * WIP. * LINT. * WIP. * Split PerWorkerEpsilonGreedy out of EpsilonGreedy. Docstrings. * Fix bug in sampler.py in case Policy has self.exploration = None * Update rllib/agents/dqn/dqn.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * WIP. * Update rllib/agents/trainer.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * WIP. * Change requests. * LINT * In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set * Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps). * Update rllib/evaluation/worker_set.py Co-Authored-By: Eric Liang <ekhliang@gmail.com> * Review fixes. * Fix default value for DQN's exploration spec. * LINT * Fix recursion bug (wrong parent c'tor). * Do not pass timestep to get_exploration_info. * Update tf_policy.py * Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs. * Bug fix tf-action-dist * DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG). * Switch off exploration when getting action probs from off-policy-estimator's policy. * LINT * Fix test_checkpoint_restore.py. * Deprecate all SAC exploration (unused) configs. * Properly use `model.last_output()` everywhere. Instead of `model._last_output`. * WIP. * Take out set_epsilon from multi-agent-env test (not needed, decays anyway). * WIP. * Trigger re-test (flaky checkpoint-restore test). * WIP. * WIP. * Add test case for deterministic action sampling in PPO. * bug fix. * Added deterministic test cases for different Agents. * Fix problem with TupleActions in dynamic-tf-policy. * Separate supported_spaces tests so they can be run separately for easier debugging. * LINT. * Fix autoregressive_action_dist.py test case. * Re-test. * Fix. * Remove duplicate py_test rule from bazel. * LINT. * WIP. * WIP. * SAC fix. * SAC fix. * WIP. * WIP. * WIP. * FIX 2 examples tests. * WIP. * WIP. * WIP. * WIP. * WIP. * Fix. * LINT. * Renamed test file. * WIP. * Add unittest.main. * Make action_dist_class mandatory. * fix * FIX. * WIP. * WIP. * Fix. * Fix. * Fix explorations test case (contextlib cannot find its own nullcontext??). * Force torch to be installed for QMIX. * LINT. * Fix determine_tests_to_run.py. * Fix determine_tests_to_run.py. * WIP * Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function). * Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function). * Rename some stuff. * Rename some stuff. * WIP. * WIP. * Fix SAC. * Fix SAC. * Fix strange tf-error in ray core tests. * Fix strange ray-core tf-error in test_memory_scheduling test case. * Fix test_io.py. * LINT. * Update SAC yaml files' config. Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-02-22 23:19:49 +01:00
if tf_module is None or tf_module.executing_eagerly():
return func
# If tf installed, return @tf.function-decorated function.
return tf_module.function(func)
return decorator
def try_import_tfp(error=False):
"""
Args:
error (bool): Whether to raise an error if tfp cannot be imported.
Returns:
The tfp module.
"""
if "RLLIB_TEST_NO_TF_IMPORT" in os.environ:
logger.warning("Not importing TensorFlow Probability for test "
"purposes.")
return None
try:
import tensorflow_probability as tfp
return tfp
except ImportError as e:
if error:
raise e
return None
# Fake module for torch.nn.
class NNStub:
pass
# Fake class for torch.nn.Module to allow it to be inherited from.
class ModuleStub:
def __init__(self, *a, **kw):
raise ImportError("Could not import `torch`.")
def try_import_torch(error=False):
"""
Args:
error (bool): Whether to raise an error if torch cannot be imported.
Returns:
tuple: torch AND torch.nn modules.
"""
if "RLLIB_TEST_NO_TORCH_IMPORT" in os.environ:
logger.warning("Not importing Torch for test purposes.")
return None, None
try:
import torch
import torch.nn as nn
return torch, nn
except ImportError as e:
if error:
raise e
nn = NNStub()
nn.Module = ModuleStub
return None, nn
def get_variable(value, framework="tf", tf_name="unnamed-variable"):
"""
Args:
value (any): The initial value to use. In the non-tf case, this will
be returned as is.
framework (str): One of "tf", "torch", or None.
tf_name (str): An optional name for the variable. Only for tf.
Returns:
any: A framework-specific variable (tf.Variable or python primitive).
"""
if framework == "tf":
import tensorflow as tf
2020-03-29 00:16:30 +01:00
dtype = getattr(
value, "dtype", tf.float32
if isinstance(value, float) else tf.int32
if isinstance(value, int) else None)
return tf.compat.v1.get_variable(
tf_name, initializer=value, dtype=dtype)
# torch or None: Return python primitive.
return value
# This call should never happen inside a module's functions/classes
# as it would re-disable tf-eager.
tf = try_import_tf()
torch, _ = try_import_torch()