ray/rllib/models/action_dist.py

90 lines
2.9 KiB
Python
Raw Normal View History

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from ray.rllib.utils.annotations import DeveloperAPI
@DeveloperAPI
class ActionDistribution(object):
"""The policy action distribution of an agent.
Attributes:
inputs (Tensors): input vector to compute samples from.
model (ModelV2): reference to model producing the inputs.
"""
@DeveloperAPI
def __init__(self, inputs, model):
"""Initialize the action dist.
Arguments:
inputs (Tensors): input vector to compute samples from.
model (ModelV2): reference to model producing the inputs. This
is mainly useful if you want to use model variables to compute
action outputs (i.e., for auto-regressive action distributions,
see examples/autoregressive_action_dist.py).
"""
self.inputs = inputs
self.model = model
@DeveloperAPI
def sample(self):
"""Draw a sample from the action distribution."""
raise NotImplementedError
@DeveloperAPI
def sampled_action_logp(self):
"""Returns the log probability of the last sampled action."""
raise NotImplementedError
@DeveloperAPI
def logp(self, x):
"""The log-likelihood of the action distribution."""
raise NotImplementedError
@DeveloperAPI
def kl(self, other):
"""The KL-divergence between two action distributions."""
raise NotImplementedError
@DeveloperAPI
def entropy(self):
"""The entropy of the action distribution."""
raise NotImplementedError
def multi_kl(self, other):
"""The KL-divergence between two action distributions.
This differs from kl() in that it can return an array for
MultiDiscrete. TODO(ekl) consider removing this.
"""
return self.kl(other)
def multi_entropy(self):
"""The entropy of the action distribution.
This differs from entropy() in that it can return an array for
MultiDiscrete. TODO(ekl) consider removing this.
"""
return self.entropy()
@DeveloperAPI
@staticmethod
def required_model_output_shape(action_space, model_config):
"""Returns the required shape of an input parameter tensor for a
particular action space and an optional dict of distribution-specific
options.
Args:
action_space (gym.Space): The action space this distribution will
be used for, whose shape attributes will be used to determine
the required shape of the input parameter tensor.
model_config (dict): Model's config dict (as defined in catalog.py)
Returns:
model_output_shape (int or np.ndarray of ints): size of the
required input vector (minus leading batch dimension).
"""
raise NotImplementedError