ray/rllib/agents/ppo/appo_policy.py

461 lines
18 KiB
Python
Raw Normal View History

"""Adapted from VTraceTFPolicy to use the PPO surrogate loss.
Keep in sync with changes to VTraceTFPolicy."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import logging
import gym
from ray.rllib.agents.impala import vtrace
from ray.rllib.agents.impala.vtrace_policy import _make_time_major, \
BEHAVIOUR_LOGITS, clip_gradients, validate_config, choose_optimizer
from ray.rllib.evaluation.postprocessing import Postprocessing
from ray.rllib.models.tf.tf_action_dist import Categorical
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.evaluation.postprocessing import compute_advantages
from ray.rllib.utils import try_import_tf
from ray.rllib.policy.tf_policy_template import build_tf_policy
from ray.rllib.policy.tf_policy import LearningRateSchedule, TFPolicy
from ray.rllib.agents.ppo.ppo_policy import KLCoeffMixin, ValueNetworkMixin
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.annotations import override
from ray.rllib.utils.explained_variance import explained_variance
from ray.rllib.utils.tf_ops import make_tf_callable
tf = try_import_tf()
POLICY_SCOPE = "func"
TARGET_POLICY_SCOPE = "target_func"
logger = logging.getLogger(__name__)
class PPOSurrogateLoss(object):
"""Loss used when V-trace is disabled.
Arguments:
prev_actions_logp: A float32 tensor of shape [T, B].
actions_logp: A float32 tensor of shape [T, B].
action_kl: A float32 tensor of shape [T, B].
actions_entropy: A float32 tensor of shape [T, B].
values: A float32 tensor of shape [T, B].
valid_mask: A bool tensor of valid RNN input elements (#2992).
advantages: A float32 tensor of shape [T, B].
value_targets: A float32 tensor of shape [T, B].
vf_loss_coeff (float): Coefficient of the value function loss.
entropy_coeff (float): Coefficient of the entropy regularizer.
clip_param (float): Clip parameter.
cur_kl_coeff (float): Coefficient for KL loss.
use_kl_loss (bool): If true, use KL loss.
"""
def __init__(self,
prev_actions_logp,
actions_logp,
action_kl,
actions_entropy,
values,
valid_mask,
advantages,
value_targets,
vf_loss_coeff=0.5,
entropy_coeff=0.01,
clip_param=0.3,
cur_kl_coeff=None,
use_kl_loss=False):
def reduce_mean_valid(t):
return tf.reduce_mean(tf.boolean_mask(t, valid_mask))
logp_ratio = tf.exp(actions_logp - prev_actions_logp)
surrogate_loss = tf.minimum(
advantages * logp_ratio,
advantages * tf.clip_by_value(logp_ratio, 1 - clip_param,
1 + clip_param))
self.mean_kl = reduce_mean_valid(action_kl)
self.pi_loss = -reduce_mean_valid(surrogate_loss)
# The baseline loss
delta = values - value_targets
self.value_targets = value_targets
self.vf_loss = 0.5 * reduce_mean_valid(tf.square(delta))
# The entropy loss
self.entropy = reduce_mean_valid(actions_entropy)
# The summed weighted loss
self.total_loss = (self.pi_loss + self.vf_loss * vf_loss_coeff -
self.entropy * entropy_coeff)
# Optional additional KL Loss
if use_kl_loss:
self.total_loss += cur_kl_coeff * self.mean_kl
class VTraceSurrogateLoss(object):
def __init__(self,
actions,
prev_actions_logp,
actions_logp,
old_policy_actions_logp,
action_kl,
actions_entropy,
dones,
behaviour_logits,
old_policy_behaviour_logits,
target_logits,
discount,
rewards,
values,
bootstrap_value,
dist_class,
model,
valid_mask,
vf_loss_coeff=0.5,
entropy_coeff=0.01,
clip_rho_threshold=1.0,
clip_pg_rho_threshold=1.0,
clip_param=0.3,
cur_kl_coeff=None,
use_kl_loss=False):
"""APPO Loss, with IS modifications and V-trace for Advantage Estimation
VTraceLoss takes tensors of shape [T, B, ...], where `B` is the
batch_size. The reason we need to know `B` is for V-trace to properly
handle episode cut boundaries.
Arguments:
actions: An int|float32 tensor of shape [T, B, logit_dim].
prev_actions_logp: A float32 tensor of shape [T, B].
actions_logp: A float32 tensor of shape [T, B].
old_policy_actions_logp: A float32 tensor of shape [T, B].
action_kl: A float32 tensor of shape [T, B].
actions_entropy: A float32 tensor of shape [T, B].
dones: A bool tensor of shape [T, B].
behaviour_logits: A float32 tensor of shape [T, B, logit_dim].
old_policy_behaviour_logits: A float32 tensor of shape
[T, B, logit_dim].
target_logits: A float32 tensor of shape [T, B, logit_dim].
discount: A float32 scalar.
rewards: A float32 tensor of shape [T, B].
values: A float32 tensor of shape [T, B].
bootstrap_value: A float32 tensor of shape [B].
dist_class: action distribution class for logits.
model: backing ModelV2 instance
valid_mask: A bool tensor of valid RNN input elements (#2992).
vf_loss_coeff (float): Coefficient of the value function loss.
entropy_coeff (float): Coefficient of the entropy regularizer.
clip_param (float): Clip parameter.
cur_kl_coeff (float): Coefficient for KL loss.
use_kl_loss (bool): If true, use KL loss.
"""
def reduce_mean_valid(t):
return tf.reduce_mean(tf.boolean_mask(t, valid_mask))
# Compute vtrace on the CPU for better perf.
with tf.device("/cpu:0"):
self.vtrace_returns = vtrace.multi_from_logits(
behaviour_policy_logits=behaviour_logits,
target_policy_logits=old_policy_behaviour_logits,
actions=tf.unstack(actions, axis=2),
discounts=tf.to_float(~dones) * discount,
rewards=rewards,
values=values,
bootstrap_value=bootstrap_value,
dist_class=dist_class,
model=model,
clip_rho_threshold=tf.cast(clip_rho_threshold, tf.float32),
clip_pg_rho_threshold=tf.cast(clip_pg_rho_threshold,
tf.float32))
self.is_ratio = tf.clip_by_value(
tf.exp(prev_actions_logp - old_policy_actions_logp), 0.0, 2.0)
logp_ratio = self.is_ratio * tf.exp(actions_logp - prev_actions_logp)
advantages = self.vtrace_returns.pg_advantages
surrogate_loss = tf.minimum(
advantages * logp_ratio,
advantages * tf.clip_by_value(logp_ratio, 1 - clip_param,
1 + clip_param))
self.mean_kl = reduce_mean_valid(action_kl)
self.pi_loss = -reduce_mean_valid(surrogate_loss)
# The baseline loss
delta = values - self.vtrace_returns.vs
self.value_targets = self.vtrace_returns.vs
self.vf_loss = 0.5 * reduce_mean_valid(tf.square(delta))
# The entropy loss
self.entropy = reduce_mean_valid(actions_entropy)
# The summed weighted loss
self.total_loss = (self.pi_loss + self.vf_loss * vf_loss_coeff -
self.entropy * entropy_coeff)
# Optional additional KL Loss
if use_kl_loss:
self.total_loss += cur_kl_coeff * self.mean_kl
def build_appo_model(policy, obs_space, action_space, config):
_, logit_dim = ModelCatalog.get_action_dist(action_space, config["model"])
policy.model = ModelCatalog.get_model_v2(
obs_space,
action_space,
logit_dim,
config["model"],
name=POLICY_SCOPE,
framework="tf")
policy.target_model = ModelCatalog.get_model_v2(
obs_space,
action_space,
logit_dim,
config["model"],
name=TARGET_POLICY_SCOPE,
framework="tf")
return policy.model
def build_appo_surrogate_loss(policy, model, dist_class, train_batch):
model_out, _ = model.from_batch(train_batch)
action_dist = dist_class(model_out, model)
if isinstance(policy.action_space, gym.spaces.Discrete):
is_multidiscrete = False
output_hidden_shape = [policy.action_space.n]
elif isinstance(policy.action_space,
gym.spaces.multi_discrete.MultiDiscrete):
is_multidiscrete = True
output_hidden_shape = policy.action_space.nvec.astype(np.int32)
else:
is_multidiscrete = False
output_hidden_shape = 1
def make_time_major(*args, **kw):
return _make_time_major(policy, train_batch.get("seq_lens"), *args,
**kw)
actions = train_batch[SampleBatch.ACTIONS]
dones = train_batch[SampleBatch.DONES]
rewards = train_batch[SampleBatch.REWARDS]
behaviour_logits = train_batch[BEHAVIOUR_LOGITS]
target_model_out, _ = policy.target_model.from_batch(train_batch)
old_policy_behaviour_logits = tf.stop_gradient(target_model_out)
unpacked_behaviour_logits = tf.split(
behaviour_logits, output_hidden_shape, axis=1)
unpacked_old_policy_behaviour_logits = tf.split(
old_policy_behaviour_logits, output_hidden_shape, axis=1)
unpacked_outputs = tf.split(model_out, output_hidden_shape, axis=1)
old_policy_action_dist = dist_class(old_policy_behaviour_logits, model)
prev_action_dist = dist_class(behaviour_logits, policy.model)
values = policy.model.value_function()
policy.model_vars = policy.model.variables()
policy.target_model_vars = policy.target_model.variables()
if policy.is_recurrent():
max_seq_len = tf.reduce_max(train_batch["seq_lens"]) - 1
mask = tf.sequence_mask(train_batch["seq_lens"], max_seq_len)
mask = tf.reshape(mask, [-1])
else:
mask = tf.ones_like(rewards)
if policy.config["vtrace"]:
logger.debug("Using V-Trace surrogate loss (vtrace=True)")
# Prepare actions for loss
loss_actions = actions if is_multidiscrete else tf.expand_dims(
actions, axis=1)
# Prepare KL for Loss
mean_kl = make_time_major(
old_policy_action_dist.multi_kl(action_dist), drop_last=True)
policy.loss = VTraceSurrogateLoss(
actions=make_time_major(loss_actions, drop_last=True),
prev_actions_logp=make_time_major(
prev_action_dist.logp(actions), drop_last=True),
actions_logp=make_time_major(
action_dist.logp(actions), drop_last=True),
old_policy_actions_logp=make_time_major(
old_policy_action_dist.logp(actions), drop_last=True),
action_kl=tf.reduce_mean(mean_kl, axis=0)
if is_multidiscrete else mean_kl,
actions_entropy=make_time_major(
action_dist.multi_entropy(), drop_last=True),
dones=make_time_major(dones, drop_last=True),
behaviour_logits=make_time_major(
unpacked_behaviour_logits, drop_last=True),
old_policy_behaviour_logits=make_time_major(
unpacked_old_policy_behaviour_logits, drop_last=True),
target_logits=make_time_major(unpacked_outputs, drop_last=True),
discount=policy.config["gamma"],
rewards=make_time_major(rewards, drop_last=True),
values=make_time_major(values, drop_last=True),
bootstrap_value=make_time_major(values)[-1],
dist_class=Categorical if is_multidiscrete else dist_class,
model=policy.model,
valid_mask=make_time_major(mask, drop_last=True),
vf_loss_coeff=policy.config["vf_loss_coeff"],
entropy_coeff=policy.config["entropy_coeff"],
clip_rho_threshold=policy.config["vtrace_clip_rho_threshold"],
clip_pg_rho_threshold=policy.config[
"vtrace_clip_pg_rho_threshold"],
clip_param=policy.config["clip_param"],
cur_kl_coeff=policy.kl_coeff,
use_kl_loss=policy.config["use_kl_loss"])
else:
logger.debug("Using PPO surrogate loss (vtrace=False)")
# Prepare KL for Loss
mean_kl = make_time_major(prev_action_dist.multi_kl(action_dist))
policy.loss = PPOSurrogateLoss(
prev_actions_logp=make_time_major(prev_action_dist.logp(actions)),
actions_logp=make_time_major(action_dist.logp(actions)),
action_kl=tf.reduce_mean(mean_kl, axis=0)
if is_multidiscrete else mean_kl,
actions_entropy=make_time_major(action_dist.multi_entropy()),
values=make_time_major(values),
valid_mask=make_time_major(mask),
advantages=make_time_major(train_batch[Postprocessing.ADVANTAGES]),
value_targets=make_time_major(
train_batch[Postprocessing.VALUE_TARGETS]),
vf_loss_coeff=policy.config["vf_loss_coeff"],
entropy_coeff=policy.config["entropy_coeff"],
clip_param=policy.config["clip_param"],
cur_kl_coeff=policy.kl_coeff,
use_kl_loss=policy.config["use_kl_loss"])
return policy.loss.total_loss
def stats(policy, train_batch):
values_batched = _make_time_major(
policy,
train_batch.get("seq_lens"),
policy.model.value_function(),
drop_last=policy.config["vtrace"])
stats_dict = {
"cur_lr": tf.cast(policy.cur_lr, tf.float64),
"policy_loss": policy.loss.pi_loss,
"entropy": policy.loss.entropy,
"var_gnorm": tf.global_norm(policy.model.trainable_variables()),
"vf_loss": policy.loss.vf_loss,
"vf_explained_var": explained_variance(
tf.reshape(policy.loss.value_targets, [-1]),
tf.reshape(values_batched, [-1])),
}
if policy.config["vtrace"]:
is_stat_mean, is_stat_var = tf.nn.moments(policy.loss.is_ratio, [0, 1])
stats_dict.update({"mean_IS": is_stat_mean})
stats_dict.update({"var_IS": is_stat_var})
if policy.config["use_kl_loss"]:
stats_dict.update({"kl": policy.loss.mean_kl})
stats_dict.update({"KL_Coeff": policy.kl_coeff})
return stats_dict
def postprocess_trajectory(policy,
sample_batch,
other_agent_batches=None,
episode=None):
if not policy.config["vtrace"]:
completed = sample_batch["dones"][-1]
if completed:
last_r = 0.0
else:
next_state = []
for i in range(policy.num_state_tensors()):
next_state.append([sample_batch["state_out_{}".format(i)][-1]])
last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
sample_batch[SampleBatch.ACTIONS][-1],
sample_batch[SampleBatch.REWARDS][-1],
*next_state)
batch = compute_advantages(
sample_batch,
last_r,
policy.config["gamma"],
policy.config["lambda"],
use_gae=policy.config["use_gae"])
else:
batch = sample_batch
del batch.data["new_obs"] # not used, so save some bandwidth
return batch
def add_values_and_logits(policy):
out = {BEHAVIOUR_LOGITS: policy.model.last_output()}
if not policy.config["vtrace"]:
out[SampleBatch.VF_PREDS] = policy.model.value_function()
return out
class TargetNetworkMixin(object):
def __init__(self, obs_space, action_space, config):
"""Target Network is updated by the master learner every
trainer.update_target_frequency steps. All worker batches
are importance sampled w.r. to the target network to ensure
a more stable pi_old in PPO.
"""
@make_tf_callable(self.get_session())
def do_update():
assign_ops = []
assert len(self.model_vars) == len(self.target_model_vars)
for var, var_target in zip(self.model_vars,
self.target_model_vars):
assign_ops.append(var_target.assign(var))
return tf.group(*assign_ops)
self.update_target = do_update
@override(TFPolicy)
def variables(self):
return self.model_vars + self.target_model_vars
def setup_mixins(policy, obs_space, action_space, config):
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
KLCoeffMixin.__init__(policy, config)
ValueNetworkMixin.__init__(policy, obs_space, action_space, config)
def setup_late_mixins(policy, obs_space, action_space, config):
TargetNetworkMixin.__init__(policy, obs_space, action_space, config)
AsyncPPOTFPolicy = build_tf_policy(
name="AsyncPPOTFPolicy",
make_model=build_appo_model,
loss_fn=build_appo_surrogate_loss,
stats_fn=stats,
postprocess_fn=postprocess_trajectory,
optimizer_fn=choose_optimizer,
gradients_fn=clip_gradients,
extra_action_fetches_fn=add_values_and_logits,
before_init=validate_config,
before_loss_init=setup_mixins,
after_init=setup_late_mixins,
mixins=[
LearningRateSchedule, KLCoeffMixin, TargetNetworkMixin,
ValueNetworkMixin
],
get_batch_divisibility_req=lambda p: p.config["sample_batch_size"])