ray/rllib/agents/ppo/ppo_torch_policy.py

252 lines
9.4 KiB
Python
Raw Normal View History

import logging
import numpy as np
import ray
from ray.rllib.agents.a3c.a3c_torch_policy import apply_grad_clipping
from ray.rllib.agents.ppo.ppo_tf_policy import postprocess_ppo_gae, \
setup_config
from ray.rllib.evaluation.postprocessing import Postprocessing
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_policy import EntropyCoeffSchedule, \
LearningRateSchedule
from ray.rllib.policy.torch_policy_template import build_torch_policy
from ray.rllib.policy.view_requirement import ViewRequirement
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.torch_ops import convert_to_torch_tensor, \
explained_variance, sequence_mask
torch, nn = try_import_torch()
logger = logging.getLogger(__name__)
class PPOLoss:
def __init__(self,
dist_class,
model,
value_targets,
advantages,
actions,
prev_logits,
prev_actions_logp,
vf_preds,
curr_action_dist,
value_fn,
cur_kl_coeff,
valid_mask,
entropy_coeff=0,
clip_param=0.1,
vf_clip_param=0.1,
vf_loss_coeff=1.0,
use_gae=True):
"""Constructs the loss for Proximal Policy Objective.
Arguments:
dist_class: action distribution class for logits.
value_targets (Placeholder): Placeholder for target values; used
for GAE.
actions (Placeholder): Placeholder for actions taken
from previous model evaluation.
advantages (Placeholder): Placeholder for calculated advantages
from previous model evaluation.
prev_logits (Placeholder): Placeholder for logits output from
previous model evaluation.
prev_actions_logp (Placeholder): Placeholder for prob output from
previous model evaluation.
vf_preds (Placeholder): Placeholder for value function output
from previous model evaluation.
curr_action_dist (ActionDistribution): ActionDistribution
of the current model.
value_fn (Tensor): Current value function output Tensor.
cur_kl_coeff (Variable): Variable holding the current PPO KL
coefficient.
valid_mask (Tensor): A bool mask of valid input elements (#2992).
entropy_coeff (float): Coefficient of the entropy regularizer.
clip_param (float): Clip parameter
vf_clip_param (float): Clip parameter for the value function
vf_loss_coeff (float): Coefficient of the value function loss
use_gae (bool): If true, use the Generalized Advantage Estimator.
"""
if valid_mask is not None:
num_valid = torch.sum(valid_mask)
def reduce_mean_valid(t):
return torch.sum(t[valid_mask]) / num_valid
else:
reduce_mean_valid = torch.mean
prev_dist = dist_class(prev_logits, model)
# Make loss functions.
logp_ratio = torch.exp(
curr_action_dist.logp(actions) - prev_actions_logp)
action_kl = prev_dist.kl(curr_action_dist)
self.mean_kl = reduce_mean_valid(action_kl)
curr_entropy = curr_action_dist.entropy()
self.mean_entropy = reduce_mean_valid(curr_entropy)
surrogate_loss = torch.min(
advantages * logp_ratio,
advantages * torch.clamp(logp_ratio, 1 - clip_param,
1 + clip_param))
self.mean_policy_loss = reduce_mean_valid(-surrogate_loss)
if use_gae:
vf_loss1 = torch.pow(value_fn - value_targets, 2.0)
vf_clipped = vf_preds + torch.clamp(value_fn - vf_preds,
-vf_clip_param, vf_clip_param)
vf_loss2 = torch.pow(vf_clipped - value_targets, 2.0)
vf_loss = torch.max(vf_loss1, vf_loss2)
self.mean_vf_loss = reduce_mean_valid(vf_loss)
loss = reduce_mean_valid(
-surrogate_loss + cur_kl_coeff * action_kl +
vf_loss_coeff * vf_loss - entropy_coeff * curr_entropy)
else:
self.mean_vf_loss = 0.0
loss = reduce_mean_valid(-surrogate_loss +
cur_kl_coeff * action_kl -
entropy_coeff * curr_entropy)
self.loss = loss
def ppo_surrogate_loss(policy, model, dist_class, train_batch):
logits, state = model.from_batch(train_batch, is_training=True)
action_dist = dist_class(logits, model)
mask = None
if state:
max_seq_len = torch.max(train_batch["seq_lens"])
mask = sequence_mask(
train_batch["seq_lens"],
max_seq_len,
time_major=model.is_time_major())
mask = torch.reshape(mask, [-1])
policy.loss_obj = PPOLoss(
dist_class,
model,
train_batch[Postprocessing.VALUE_TARGETS],
train_batch[Postprocessing.ADVANTAGES],
train_batch[SampleBatch.ACTIONS],
train_batch[SampleBatch.ACTION_DIST_INPUTS],
train_batch[SampleBatch.ACTION_LOGP],
train_batch[SampleBatch.VF_PREDS],
action_dist,
model.value_function(),
policy.kl_coeff,
mask,
entropy_coeff=policy.entropy_coeff,
clip_param=policy.config["clip_param"],
vf_clip_param=policy.config["vf_clip_param"],
vf_loss_coeff=policy.config["vf_loss_coeff"],
use_gae=policy.config["use_gae"],
)
return policy.loss_obj.loss
def kl_and_loss_stats(policy, train_batch):
2019-07-03 15:59:47 -07:00
return {
"cur_kl_coeff": policy.kl_coeff,
"cur_lr": policy.cur_lr,
"total_loss": policy.loss_obj.loss,
"policy_loss": policy.loss_obj.mean_policy_loss,
"vf_loss": policy.loss_obj.mean_vf_loss,
2019-07-03 15:59:47 -07:00
"vf_explained_var": explained_variance(
train_batch[Postprocessing.VALUE_TARGETS],
policy.model.value_function()),
"kl": policy.loss_obj.mean_kl,
"entropy": policy.loss_obj.mean_entropy,
"entropy_coeff": policy.entropy_coeff,
}
def vf_preds_fetches(policy, input_dict, state_batches, model, action_dist):
"""Adds value function outputs to experience train_batches."""
return {
SampleBatch.VF_PREDS: policy.model.value_function(),
}
class KLCoeffMixin:
def __init__(self, config):
# KL Coefficient.
self.kl_coeff = config["kl_coeff"]
self.kl_target = config["kl_target"]
def update_kl(self, sampled_kl):
if sampled_kl > 2.0 * self.kl_target:
self.kl_coeff *= 1.5
elif sampled_kl < 0.5 * self.kl_target:
self.kl_coeff *= 0.5
return self.kl_coeff
class ValueNetworkMixin:
def __init__(self, obs_space, action_space, config):
if config["use_gae"]:
def value(ob, prev_action, prev_reward, *state):
model_out, _ = self.model({
SampleBatch.CUR_OBS: convert_to_torch_tensor(
np.asarray([ob]), self.device),
SampleBatch.PREV_ACTIONS: convert_to_torch_tensor(
np.asarray([prev_action]), self.device),
SampleBatch.PREV_REWARDS: convert_to_torch_tensor(
np.asarray([prev_reward]), self.device),
"is_training": False,
}, [
convert_to_torch_tensor(np.asarray([s]), self.device)
for s in state
], convert_to_torch_tensor(np.asarray([1]), self.device))
return self.model.value_function()[0]
else:
def value(ob, prev_action, prev_reward, *state):
return 0.0
self._value = value
def setup_mixins(policy, obs_space, action_space, config):
ValueNetworkMixin.__init__(policy, obs_space, action_space, config)
KLCoeffMixin.__init__(policy, config)
2019-07-09 03:30:32 +02:00
EntropyCoeffSchedule.__init__(policy, config["entropy_coeff"],
config["entropy_coeff_schedule"])
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
def training_view_requirements_fn(policy):
return {
# Next obs are needed for PPO postprocessing.
SampleBatch.NEXT_OBS: ViewRequirement(SampleBatch.OBS, shift=1),
# VF preds are needed for the loss.
SampleBatch.VF_PREDS: ViewRequirement(shift=0),
# Needed for postprocessing.
SampleBatch.ACTION_DIST_INPUTS: ViewRequirement(shift=0),
SampleBatch.ACTION_LOGP: ViewRequirement(shift=0),
# Created during postprocessing.
Postprocessing.ADVANTAGES: ViewRequirement(shift=0),
Postprocessing.VALUE_TARGETS: ViewRequirement(shift=0),
}
PPOTorchPolicy = build_torch_policy(
name="PPOTorchPolicy",
get_default_config=lambda: ray.rllib.agents.ppo.ppo.DEFAULT_CONFIG,
loss_fn=ppo_surrogate_loss,
stats_fn=kl_and_loss_stats,
extra_action_out_fn=vf_preds_fetches,
postprocess_fn=postprocess_ppo_gae,
extra_grad_process_fn=apply_grad_clipping,
before_init=setup_config,
after_init=setup_mixins,
mixins=[
LearningRateSchedule, EntropyCoeffSchedule, KLCoeffMixin,
ValueNetworkMixin
],
training_view_requirements_fn=training_view_requirements_fn,
)