ray/test/multi_node_test.py

423 lines
12 KiB
Python
Raw Normal View History

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import pytest
import subprocess
import time
import ray
from ray.test.test_utils import (run_and_get_output, run_string_as_driver,
run_string_as_driver_nonblocking)
@pytest.fixture
def ray_start_head():
out = run_and_get_output(["ray", "start", "--head", "--num-cpus=2"])
# Get the redis address from the output.
redis_substring_prefix = "redis_address=\""
redis_address_location = (
out.find(redis_substring_prefix) + len(redis_substring_prefix))
redis_address = out[redis_address_location:]
redis_address = redis_address.split("\"")[0]
yield redis_address
# Disconnect from the Ray cluster.
ray.shutdown()
# Kill the Ray cluster.
subprocess.Popen(["ray", "stop"]).wait()
def test_error_isolation(ray_start_head):
redis_address = ray_start_head
# Connect a driver to the Ray cluster.
ray.init(redis_address=redis_address)
# There shouldn't be any errors yet.
assert len(ray.error_info()) == 0
error_string1 = "error_string1"
error_string2 = "error_string2"
@ray.remote
def f():
raise Exception(error_string1)
# Run a remote function that throws an error.
with pytest.raises(Exception):
ray.get(f.remote())
# Wait for the error to appear in Redis.
while len(ray.error_info()) != 1:
time.sleep(0.1)
print("Waiting for error to appear.")
# Make sure we got the error.
assert len(ray.error_info()) == 1
assert error_string1 in ray.error_info()[0]["message"]
# Start another driver and make sure that it does not receive this
# error. Make the other driver throw an error, and make sure it
# receives that error.
driver_script = """
import ray
import time
ray.init(redis_address="{}")
time.sleep(1)
assert len(ray.error_info()) == 0
@ray.remote
def f():
raise Exception("{}")
try:
ray.get(f.remote())
except Exception as e:
pass
while len(ray.error_info()) != 1:
print(len(ray.error_info()))
time.sleep(0.1)
assert len(ray.error_info()) == 1
assert "{}" in ray.error_info()[0]["message"]
print("success")
""".format(redis_address, error_string2, error_string2)
out = run_string_as_driver(driver_script)
# Make sure the other driver succeeded.
assert "success" in out
# Make sure that the other error message doesn't show up for this
# driver.
assert len(ray.error_info()) == 1
assert error_string1 in ray.error_info()[0]["message"]
def test_remote_function_isolation(ray_start_head):
# This test will run multiple remote functions with the same names in
# two different drivers. Connect a driver to the Ray cluster.
redis_address = ray_start_head
ray.init(redis_address=redis_address)
# Start another driver and make sure that it can define and call its
# own commands with the same names.
driver_script = """
import ray
import time
ray.init(redis_address="{}")
@ray.remote
def f():
return 3
@ray.remote
def g(x, y):
return 4
for _ in range(10000):
result = ray.get([f.remote(), g.remote(0, 0)])
assert result == [3, 4]
print("success")
""".format(redis_address)
out = run_string_as_driver(driver_script)
@ray.remote
def f():
return 1
@ray.remote
def g(x):
return 2
for _ in range(10000):
result = ray.get([f.remote(), g.remote(0)])
assert result == [1, 2]
# Make sure the other driver succeeded.
assert "success" in out
def test_driver_exiting_quickly(ray_start_head):
# This test will create some drivers that submit some tasks and then
# exit without waiting for the tasks to complete.
redis_address = ray_start_head
ray.init(redis_address=redis_address)
# Define a driver that creates an actor and exits.
driver_script1 = """
import ray
ray.init(redis_address="{}")
@ray.remote
class Foo(object):
def __init__(self):
pass
Foo.remote()
print("success")
""".format(redis_address)
# Define a driver that creates some tasks and exits.
driver_script2 = """
import ray
ray.init(redis_address="{}")
@ray.remote
def f():
return 1
f.remote()
print("success")
""".format(redis_address)
# Create some drivers and let them exit and make sure everything is
# still alive.
for _ in range(3):
out = run_string_as_driver(driver_script1)
# Make sure the first driver ran to completion.
assert "success" in out
out = run_string_as_driver(driver_script2)
# Make sure the first driver ran to completion.
assert "success" in out
assert ray.services.all_processes_alive()
@pytest.fixture
def ray_start_head_with_resources():
out = run_and_get_output(
["ray", "start", "--head", "--num-cpus=1", "--num-gpus=1"])
# Get the redis address from the output.
redis_substring_prefix = "redis_address=\""
redis_address_location = (
out.find(redis_substring_prefix) + len(redis_substring_prefix))
redis_address = out[redis_address_location:]
redis_address = redis_address.split("\"")[0]
yield redis_address
# Kill the Ray cluster.
subprocess.Popen(["ray", "stop"]).wait()
@pytest.mark.skipif(
os.environ.get("RAY_USE_XRAY") != "1",
reason="This test only works with xray.")
def test_drivers_release_resources(ray_start_head_with_resources):
redis_address = ray_start_head_with_resources
# Define a driver that creates an actor and exits.
driver_script1 = """
import time
import ray
ray.init(redis_address="{}")
@ray.remote
def f(duration):
time.sleep(duration)
@ray.remote(num_gpus=1)
def g(duration):
time.sleep(duration)
@ray.remote(num_gpus=1)
class Foo(object):
def __init__(self):
pass
# Make sure some resources are available for us to run tasks.
ray.get(f.remote(0))
ray.get(g.remote(0))
# Start a bunch of actors and tasks that use resources. These should all be
# cleaned up when this driver exits.
foos = [Foo.remote() for _ in range(100)]
[f.remote(10 ** 6) for _ in range(100)]
print("success")
""".format(redis_address)
driver_script2 = (driver_script1 +
"import sys\nsys.stdout.flush()\ntime.sleep(10 ** 6)\n")
def wait_for_success_output(process_handle, timeout=10):
# Wait until the process prints "success" and then return.
start_time = time.time()
while time.time() - start_time < timeout:
output_line = ray.utils.decode(
process_handle.stdout.readline()).strip()
print(output_line)
if output_line == "success":
return
raise Exception("Timed out waiting for process to print success.")
# Make sure we can run this driver repeatedly, which means that resources
# are getting released in between.
for _ in range(5):
out = run_string_as_driver(driver_script1)
# Make sure the first driver ran to completion.
assert "success" in out
# Also make sure that this works when the driver exits ungracefully.
process_handle = run_string_as_driver_nonblocking(driver_script2)
wait_for_success_output(process_handle)
# Kill the process ungracefully.
process_handle.kill()
def test_calling_start_ray_head():
# Test that we can call start-ray.sh with various command line
# parameters. TODO(rkn): This test only tests the --head code path. We
# should also test the non-head node code path.
# Test starting Ray with no arguments.
run_and_get_output(["ray", "start", "--head"])
subprocess.Popen(["ray", "stop"]).wait()
# Test starting Ray with a number of workers specified.
run_and_get_output(["ray", "start", "--head", "--num-workers", "20"])
subprocess.Popen(["ray", "stop"]).wait()
# Test starting Ray with a redis port specified.
run_and_get_output(["ray", "start", "--head", "--redis-port", "6379"])
subprocess.Popen(["ray", "stop"]).wait()
# Test starting Ray with a node IP address specified.
run_and_get_output(
["ray", "start", "--head", "--node-ip-address", "127.0.0.1"])
subprocess.Popen(["ray", "stop"]).wait()
# Test starting Ray with an object manager port specified.
run_and_get_output(
["ray", "start", "--head", "--object-manager-port", "12345"])
subprocess.Popen(["ray", "stop"]).wait()
# Test starting Ray with the number of CPUs specified.
run_and_get_output(["ray", "start", "--head", "--num-cpus", "2"])
subprocess.Popen(["ray", "stop"]).wait()
# Test starting Ray with the number of GPUs specified.
run_and_get_output(["ray", "start", "--head", "--num-gpus", "100"])
subprocess.Popen(["ray", "stop"]).wait()
# Test starting Ray with the max redis clients specified.
run_and_get_output(
["ray", "start", "--head", "--redis-max-clients", "100"])
subprocess.Popen(["ray", "stop"]).wait()
if "RAY_USE_NEW_GCS" not in os.environ:
# Test starting Ray with redis shard ports specified.
run_and_get_output([
"ray", "start", "--head", "--redis-shard-ports", "6380,6381,6382"
])
subprocess.Popen(["ray", "stop"]).wait()
# Test starting Ray with all arguments specified.
2018-04-11 10:11:35 -07:00
run_and_get_output([
"ray", "start", "--head", "--num-workers", "2", "--redis-port",
"6379", "--redis-shard-ports", "6380,6381,6382",
"--object-manager-port", "12345", "--num-cpus", "2", "--num-gpus",
"0", "--redis-max-clients", "100", "--resources", "{\"Custom\": 1}"
2018-04-11 10:11:35 -07:00
])
subprocess.Popen(["ray", "stop"]).wait()
# Test starting Ray with invalid arguments.
with pytest.raises(Exception):
run_and_get_output(
["ray", "start", "--head", "--redis-address", "127.0.0.1:6379"])
subprocess.Popen(["ray", "stop"]).wait()
@pytest.fixture
def ray_start_head_local():
# Start the Ray processes on this machine.
run_and_get_output([
"ray", "start", "--head", "--node-ip-address=localhost",
"--redis-port=6379"
])
yield None
# Disconnect from the Ray cluster.
ray.shutdown()
# Kill the Ray cluster.
subprocess.Popen(["ray", "stop"]).wait()
def test_using_hostnames(ray_start_head_local):
ray.init(node_ip_address="localhost", redis_address="localhost:6379")
@ray.remote
def f():
return 1
assert ray.get(f.remote()) == 1
@pytest.fixture
def ray_start_regular():
# Start the Ray processes.
address_info = ray.init(num_cpus=1)
yield address_info
# The code after the yield will run as teardown code.
ray.shutdown()
def test_connecting_in_local_case(ray_start_regular):
address_info = ray_start_regular
# Define a driver that just connects to Redis.
driver_script = """
import ray
ray.init(redis_address="{}")
print("success")
""".format(address_info["redis_address"])
out = run_string_as_driver(driver_script)
# Make sure the other driver succeeded.
assert "success" in out
def test_run_driver_twice(ray_start_regular):
# We used to have issue 2165 and 2288:
# https://github.com/ray-project/ray/issues/2165
# https://github.com/ray-project/ray/issues/2288
# both complain that driver will hang when run for the second time.
# This test is used to verify the fix for above issue, it will run the
# same driver for twice and verify whether both of them succeed.
address_info = ray_start_regular
driver_script = """
import ray
import ray.tune as tune
import os
import time
def train_func(config, reporter): # add a reporter arg
for i in range(2):
time.sleep(0.1)
reporter(timesteps_total=i, mean_accuracy=i+97) # report metrics
ray.init(redis_address="{}")
ray.tune.register_trainable("train_func", train_func)
tune.run_experiments({{
"my_experiment": {{
"run": "train_func",
"stop": {{"mean_accuracy": 99}},
"config": {{
"layer1": {{
"class_name": tune.grid_search(["a"]),
"config": {{"lr": tune.grid_search([1, 2])}}
}},
}},
"local_dir": os.path.expanduser("~/tmp")
}}
}})
print("success")
""".format(address_info["redis_address"])
for i in range(2):
out = run_string_as_driver(driver_script)
assert "success" in out