2022-05-24 12:53:53 +02:00
|
|
|
two-step-game-maddpg:
|
2022-05-06 12:35:21 +02:00
|
|
|
env: ray.rllib.examples.env.two_step_game.TwoStepGame
|
|
|
|
run: MADDPG
|
|
|
|
stop:
|
2022-05-24 12:53:53 +02:00
|
|
|
episode_reward_mean: 7.2
|
2022-05-06 12:35:21 +02:00
|
|
|
timesteps_total: 20000
|
|
|
|
config:
|
|
|
|
# MADDPG only supports tf for now.
|
|
|
|
framework: tf
|
|
|
|
|
|
|
|
env_config:
|
|
|
|
env_config:
|
|
|
|
actions_are_logits: true
|
|
|
|
|
2022-08-11 13:07:30 +02:00
|
|
|
num_steps_sampled_before_learning_starts: 200
|
2022-05-06 12:35:21 +02:00
|
|
|
|
|
|
|
multiagent:
|
|
|
|
policies:
|
|
|
|
p0:
|
|
|
|
- null
|
|
|
|
- null
|
|
|
|
- null
|
|
|
|
- {
|
|
|
|
agent_id: 0
|
|
|
|
}
|
|
|
|
p1:
|
|
|
|
- null
|
|
|
|
- null
|
|
|
|
- null
|
|
|
|
- {
|
|
|
|
agent_id: 1
|
|
|
|
}
|
|
|
|
# YAML-capable policy_mapping_fn definition via providing a callable class here.
|
|
|
|
policy_mapping_fn:
|
|
|
|
type: ray.rllib.examples.multi_agent_and_self_play.policy_mapping_fn.PolicyMappingFn
|