2017-12-17 15:59:57 -08:00
|
|
|
# You can expect ~20 reward within 1.1m timesteps / 2.1 hours on a K80 GPU
|
2017-10-29 10:52:30 -07:00
|
|
|
pong-deterministic-dqn:
|
2017-10-13 16:18:16 -07:00
|
|
|
env: PongDeterministic-v4
|
2017-11-20 17:52:43 -08:00
|
|
|
run: DQN
|
2017-10-13 16:18:16 -07:00
|
|
|
stop:
|
|
|
|
episode_reward_mean: 20
|
|
|
|
time_total_s: 7200
|
2017-10-29 10:52:30 -07:00
|
|
|
config:
|
2020-05-26 11:10:27 +02:00
|
|
|
# Works for both torch and tf.
|
2020-05-27 16:19:13 +02:00
|
|
|
framework: tf
|
2018-11-13 18:00:03 -08:00
|
|
|
num_gpus: 1
|
2017-10-29 10:52:30 -07:00
|
|
|
gamma: 0.99
|
|
|
|
lr: .0001
|
2022-05-17 13:43:49 +02:00
|
|
|
replay_buffer_config:
|
|
|
|
type: MultiAgentPrioritizedReplayBuffer
|
|
|
|
capacity: 50000
|
2022-08-11 13:07:30 +02:00
|
|
|
num_steps_sampled_before_learning_starts: 10000
|
2020-03-14 12:05:04 -07:00
|
|
|
rollout_fragment_length: 4
|
2017-10-29 10:52:30 -07:00
|
|
|
train_batch_size: 32
|
2020-02-20 17:39:16 +01:00
|
|
|
exploration_config:
|
2020-02-11 00:22:07 +01:00
|
|
|
epsilon_timesteps: 200000
|
|
|
|
final_epsilon: .01
|
2017-10-29 10:52:30 -07:00
|
|
|
model:
|
|
|
|
grayscale: True
|
|
|
|
zero_mean: False
|
|
|
|
dim: 42
|
2022-07-22 10:10:51 -07:00
|
|
|
# we should set compress_observations to True because few machines
|
|
|
|
# would be able to contain the replay buffers in memory otherwise
|
|
|
|
compress_observations: True
|