ray/rllib/agents/marwil/marwil_tf_policy.py

192 lines
7.5 KiB
Python
Raw Normal View History

import logging
import gym
from typing import Optional, Dict
import ray
from ray.rllib.agents.ppo.ppo_tf_policy import compute_and_clip_gradients
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.evaluation.postprocessing import compute_advantages, \
Postprocessing
from ray.rllib.policy.tf_policy_template import build_tf_policy
2020-07-11 22:06:35 +02:00
from ray.rllib.utils.framework import try_import_tf, get_variable
from ray.rllib.utils.tf_ops import explained_variance, make_tf_callable
from ray.rllib.policy.policy import Policy
from ray.rllib.utils.typing import TrainerConfigDict, TensorType, \
PolicyID
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.models.modelv2 import ModelV2
tf1, tf, tfv = try_import_tf()
logger = logging.getLogger(__name__)
class ValueNetworkMixin:
def __init__(self, obs_space: gym.spaces.Space,
action_space: gym.spaces.Space, config: TrainerConfigDict):
# Input dict is provided to us automatically via the Model's
# requirements. It's a single-timestep (last one in trajectory)
# input_dict.
@make_tf_callable(self.get_session())
def value(**input_dict):
model_out, _ = self.model.from_batch(input_dict, is_training=False)
# [0] = remove the batch dim.
return self.model.value_function()[0]
self._value = value
def postprocess_advantages(
policy: Policy,
sample_batch: SampleBatch,
other_agent_batches: Optional[Dict[PolicyID, SampleBatch]] = None,
episode=None) -> SampleBatch:
"""Postprocesses a trajectory and returns the processed trajectory.
The trajectory contains only data from one episode and from one agent.
- If `config.batch_mode=truncate_episodes` (default), sample_batch may
contain a truncated (at-the-end) episode, in case the
`config.rollout_fragment_length` was reached by the sampler.
- If `config.batch_mode=complete_episodes`, sample_batch will contain
exactly one episode (no matter how long).
New columns can be added to sample_batch and existing ones may be altered.
Args:
policy (Policy): The Policy used to generate the trajectory
(`sample_batch`)
sample_batch (SampleBatch): The SampleBatch to postprocess.
other_agent_batches (Optional[Dict[PolicyID, SampleBatch]]): Optional
dict of AgentIDs mapping to other agents' trajectory data (from the
same episode). NOTE: The other agents use the same policy.
episode (Optional[MultiAgentEpisode]): Optional multi-agent episode
object in which the agents operated.
Returns:
SampleBatch: The postprocessed, modified SampleBatch (or a new one).
"""
# Trajectory is actually complete -> last r=0.0.
if sample_batch[SampleBatch.DONES][-1]:
last_r = 0.0
# Trajectory has been truncated -> last r=VF estimate of last obs.
else:
# Input dict is provided to us automatically via the Model's
# requirements. It's a single-timestep (last one in trajectory)
# input_dict.
# Create an input dict according to the Model's requirements.
index = "last" if SampleBatch.NEXT_OBS in sample_batch else -1
input_dict = sample_batch.get_single_step_input_dict(
policy.model.view_requirements, index=index)
last_r = policy._value(**input_dict)
# Adds the "advantages" (which in the case of MARWIL are simply the
# discounted cummulative rewards) to the SampleBatch.
return compute_advantages(
sample_batch,
last_r,
policy.config["gamma"],
# We just want the discounted cummulative rewards, so we won't need
# GAE nor critic (use_critic=True: Subtract vf-estimates from returns).
use_gae=False,
use_critic=False)
class MARWILLoss:
def __init__(self, policy: Policy, value_estimates: TensorType,
action_dist: ActionDistribution, actions: TensorType,
cumulative_rewards: TensorType, vf_loss_coeff: float,
beta: float):
# Advantage Estimation.
adv = cumulative_rewards - value_estimates
adv_squared = tf.reduce_mean(tf.math.square(adv))
# Value function's loss term (MSE).
self.v_loss = 0.5 * adv_squared
if beta != 0.0:
# Perform moving averaging of advantage^2.
# Update averaged advantage norm.
# Eager.
if policy.config["framework"] in ["tf2", "tfe"]:
update_term = adv_squared - policy._moving_average_sqd_adv_norm
policy._moving_average_sqd_adv_norm.assign_add(
1e-7 * update_term)
# Exponentially weighted advantages.
c = tf.math.sqrt(policy._moving_average_sqd_adv_norm)
exp_advs = tf.math.exp(beta * (adv / (1e-8 + c)))
# Static graph.
else:
update_adv_norm = tf1.assign_add(
ref=policy._moving_average_sqd_adv_norm,
value=1e-7 *
(adv_squared - policy._moving_average_sqd_adv_norm))
# Exponentially weighted advantages.
with tf1.control_dependencies([update_adv_norm]):
exp_advs = tf.math.exp(beta * tf.math.divide(
adv, 1e-8 + tf.math.sqrt(
policy._moving_average_sqd_adv_norm)))
exp_advs = tf.stop_gradient(exp_advs)
else:
exp_advs = 1.0
# L = - A * log\pi_\theta(a|s)
logprobs = action_dist.logp(actions)
self.p_loss = -1.0 * tf.reduce_mean(exp_advs * logprobs)
self.total_loss = self.p_loss + vf_loss_coeff * self.v_loss
self.explained_variance = tf.reduce_mean(
explained_variance(cumulative_rewards, value_estimates))
def marwil_loss(policy: Policy, model: ModelV2, dist_class: ActionDistribution,
train_batch: SampleBatch) -> TensorType:
model_out, _ = model.from_batch(train_batch)
action_dist = dist_class(model_out, model)
value_estimates = model.value_function()
policy.loss = MARWILLoss(policy, value_estimates, action_dist,
train_batch[SampleBatch.ACTIONS],
train_batch[Postprocessing.ADVANTAGES],
policy.config["vf_coeff"], policy.config["beta"])
return policy.loss.total_loss
def stats(policy: Policy, train_batch: SampleBatch) -> Dict[str, TensorType]:
return {
"policy_loss": policy.loss.p_loss,
"vf_loss": policy.loss.v_loss,
"total_loss": policy.loss.total_loss,
"vf_explained_var": policy.loss.explained_variance,
}
def setup_mixins(policy: Policy, obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: TrainerConfigDict) -> None:
ValueNetworkMixin.__init__(policy, obs_space, action_space, config)
# Set up a tf-var for the moving avg (do this here to make it work with
# eager mode); "c^2" in the paper.
policy._moving_average_sqd_adv_norm = get_variable(
2020-07-11 22:06:35 +02:00
100.0,
framework="tf",
tf_name="moving_average_of_advantage_norm",
trainable=False)
MARWILTFPolicy = build_tf_policy(
name="MARWILTFPolicy",
get_default_config=lambda: ray.rllib.agents.marwil.marwil.DEFAULT_CONFIG,
loss_fn=marwil_loss,
stats_fn=stats,
postprocess_fn=postprocess_advantages,
before_loss_init=setup_mixins,
compute_gradients_fn=compute_and_clip_gradients,
mixins=[ValueNetworkMixin])