mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
77 lines
2.1 KiB
Python
77 lines
2.1 KiB
Python
![]() |
import argparse
|
||
|
from gym.spaces import Box, Discrete
|
||
|
import os
|
||
|
|
||
|
from ray.rllib.examples.env.action_mask_env import ActionMaskEnv
|
||
|
from ray.rllib.examples.models.action_mask_model import \
|
||
|
ActionMaskModel, TorchActionMaskModel
|
||
|
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument(
|
||
|
"--run",
|
||
|
type=str,
|
||
|
default="APPO",
|
||
|
help="The RLlib-registered algorithm to use.")
|
||
|
parser.add_argument("--num-cpus", type=int, default=0)
|
||
|
parser.add_argument(
|
||
|
"--framework",
|
||
|
choices=["tf", "tf2", "tfe", "torch"],
|
||
|
default="tf",
|
||
|
help="The DL framework specifier.")
|
||
|
parser.add_argument("--eager-tracing", action="store_true")
|
||
|
parser.add_argument(
|
||
|
"--stop-iters",
|
||
|
type=int,
|
||
|
default=200,
|
||
|
help="Number of iterations to train.")
|
||
|
parser.add_argument(
|
||
|
"--stop-timesteps",
|
||
|
type=int,
|
||
|
default=100000,
|
||
|
help="Number of timesteps to train.")
|
||
|
parser.add_argument(
|
||
|
"--stop-reward",
|
||
|
type=float,
|
||
|
default=80.0,
|
||
|
help="Reward at which we stop training.")
|
||
|
parser.add_argument(
|
||
|
"--local-mode",
|
||
|
action="store_true",
|
||
|
help="Init Ray in local mode for easier debugging.")
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import ray
|
||
|
from ray import tune
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode)
|
||
|
|
||
|
config = {
|
||
|
"env": ActionMaskEnv,
|
||
|
"env_config": {
|
||
|
"action_space": Discrete(100),
|
||
|
"observation_space": Box(-1.0, 1.0, (5, )),
|
||
|
},
|
||
|
"model": {
|
||
|
"custom_model": ActionMaskModel
|
||
|
if args.framework != "torch" else TorchActionMaskModel,
|
||
|
},
|
||
|
|
||
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
||
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
||
|
"framework": args.framework,
|
||
|
# Run with tracing enabled for tfe/tf2?
|
||
|
"eager_tracing": args.eager_tracing,
|
||
|
}
|
||
|
|
||
|
stop = {
|
||
|
"training_iteration": args.stop_iters,
|
||
|
"timesteps_total": args.stop_timesteps,
|
||
|
"episode_reward_mean": args.stop_reward,
|
||
|
}
|
||
|
|
||
|
results = tune.run(args.run, config=config, stop=stop, verbose=2)
|
||
|
|
||
|
ray.shutdown()
|