ray/rllib/tests/test_external_multi_agent_env.py

97 lines
3.6 KiB
Python
Raw Normal View History

2019-04-07 04:58:14 +02:00
import gym
import numpy as np
import random
import unittest
import ray
from ray.rllib.agents.pg.pg_tf_policy import PGTFPolicy
2019-04-07 04:58:14 +02:00
from ray.rllib.optimizers import SyncSamplesOptimizer
from ray.rllib.evaluation.rollout_worker import RolloutWorker
from ray.rllib.evaluation.worker_set import WorkerSet
2019-04-07 04:58:14 +02:00
from ray.rllib.env.external_multi_agent_env import ExternalMultiAgentEnv
from ray.rllib.tests.test_rollout_worker import MockPolicy
2019-04-07 04:58:14 +02:00
from ray.rllib.tests.test_external_env import make_simple_serving
from ray.rllib.tests.test_multi_agent_env import BasicMultiAgent, MultiCartpole
from ray.rllib.evaluation.metrics import collect_metrics
SimpleMultiServing = make_simple_serving(True, ExternalMultiAgentEnv)
class TestExternalMultiAgentEnv(unittest.TestCase):
def setUp(self) -> None:
ray.init()
def tearDown(self) -> None:
ray.shutdown()
def test_external_multi_agent_env_complete_episodes(self):
2019-04-07 04:58:14 +02:00
agents = 4
ev = RolloutWorker(
2019-04-07 04:58:14 +02:00
env_creator=lambda _: SimpleMultiServing(BasicMultiAgent(agents)),
policy=MockPolicy,
rollout_fragment_length=40,
2019-04-07 04:58:14 +02:00
batch_mode="complete_episodes")
for _ in range(3):
batch = ev.sample()
self.assertEqual(batch.count, 40)
self.assertEqual(len(np.unique(batch["agent_index"])), agents)
def test_external_multi_agent_env_truncate_episodes(self):
2019-04-07 04:58:14 +02:00
agents = 4
ev = RolloutWorker(
2019-04-07 04:58:14 +02:00
env_creator=lambda _: SimpleMultiServing(BasicMultiAgent(agents)),
policy=MockPolicy,
rollout_fragment_length=40,
2019-04-07 04:58:14 +02:00
batch_mode="truncate_episodes")
for _ in range(3):
batch = ev.sample()
self.assertEqual(batch.count, 160)
self.assertEqual(len(np.unique(batch["agent_index"])), agents)
def test_external_multi_agent_env_sample(self):
2019-04-07 04:58:14 +02:00
agents = 2
act_space = gym.spaces.Discrete(2)
obs_space = gym.spaces.Discrete(2)
ev = RolloutWorker(
2019-04-07 04:58:14 +02:00
env_creator=lambda _: SimpleMultiServing(BasicMultiAgent(agents)),
policy={
"p0": (MockPolicy, obs_space, act_space, {}),
"p1": (MockPolicy, obs_space, act_space, {}),
2019-04-07 04:58:14 +02:00
},
policy_mapping_fn=lambda agent_id: "p{}".format(agent_id % 2),
rollout_fragment_length=50)
2019-04-07 04:58:14 +02:00
batch = ev.sample()
self.assertEqual(batch.count, 50)
def test_train_external_multi_cartpole_many_policies(self):
2019-04-07 04:58:14 +02:00
n = 20
single_env = gym.make("CartPole-v0")
act_space = single_env.action_space
obs_space = single_env.observation_space
policies = {}
for i in range(20):
policies["pg_{}".format(i)] = (PGTFPolicy, obs_space, act_space,
2019-04-07 04:58:14 +02:00
{})
policy_ids = list(policies.keys())
ev = RolloutWorker(
2019-04-07 04:58:14 +02:00
env_creator=lambda _: MultiCartpole(n),
policy=policies,
2019-04-07 04:58:14 +02:00
policy_mapping_fn=lambda agent_id: random.choice(policy_ids),
rollout_fragment_length=100)
optimizer = SyncSamplesOptimizer(WorkerSet._from_existing(ev))
2019-04-07 04:58:14 +02:00
for i in range(100):
optimizer.step()
result = collect_metrics(ev)
print("Iteration {}, rew {}".format(i,
result["policy_reward_mean"]))
print("Total reward", result["episode_reward_mean"])
if result["episode_reward_mean"] >= 25 * n:
return
raise Exception("failed to improve reward")
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))