2017-12-14 01:08:23 -08:00
|
|
|
import numpy as np
|
|
|
|
import scipy.signal
|
2021-01-19 14:22:36 +01:00
|
|
|
from typing import Dict, Optional
|
|
|
|
|
|
|
|
from ray.rllib.evaluation.episode import MultiAgentEpisode
|
|
|
|
from ray.rllib.policy.policy import Policy
|
2019-05-20 16:46:05 -07:00
|
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
2019-01-23 21:27:26 -08:00
|
|
|
from ray.rllib.utils.annotations import DeveloperAPI
|
2021-01-19 14:22:36 +01:00
|
|
|
from ray.rllib.utils.typing import AgentID
|
2017-12-14 01:08:23 -08:00
|
|
|
|
|
|
|
|
2020-01-02 17:42:13 -08:00
|
|
|
class Postprocessing:
|
2019-03-29 12:44:23 -07:00
|
|
|
"""Constant definitions for postprocessing."""
|
|
|
|
|
|
|
|
ADVANTAGES = "advantages"
|
|
|
|
VALUE_TARGETS = "value_targets"
|
|
|
|
|
|
|
|
|
2019-01-23 21:27:26 -08:00
|
|
|
@DeveloperAPI
|
2020-06-19 13:09:05 -07:00
|
|
|
def compute_advantages(rollout: SampleBatch,
|
|
|
|
last_r: float,
|
|
|
|
gamma: float = 0.9,
|
|
|
|
lambda_: float = 1.0,
|
|
|
|
use_gae: bool = True,
|
|
|
|
use_critic: bool = True):
|
2020-01-21 08:06:50 +01:00
|
|
|
"""
|
2020-08-20 17:05:57 +02:00
|
|
|
Given a rollout, compute its value targets and the advantages.
|
2017-12-24 12:25:13 -08:00
|
|
|
|
|
|
|
Args:
|
2020-08-20 17:05:57 +02:00
|
|
|
rollout (SampleBatch): SampleBatch of a single trajectory.
|
|
|
|
last_r (float): Value estimation for last observation.
|
2018-07-24 20:51:22 -07:00
|
|
|
gamma (float): Discount factor.
|
2020-08-20 17:05:57 +02:00
|
|
|
lambda_ (float): Parameter for GAE.
|
|
|
|
use_gae (bool): Using Generalized Advantage Estimation.
|
2020-02-01 08:25:45 +02:00
|
|
|
use_critic (bool): Whether to use critic (value estimates). Setting
|
2020-08-20 17:05:57 +02:00
|
|
|
this to False will use 0 as baseline.
|
2017-12-24 12:25:13 -08:00
|
|
|
|
|
|
|
Returns:
|
|
|
|
SampleBatch (SampleBatch): Object with experience from rollout and
|
2018-06-26 13:17:15 -07:00
|
|
|
processed rewards.
|
|
|
|
"""
|
2017-12-14 01:08:23 -08:00
|
|
|
|
2020-02-01 08:25:45 +02:00
|
|
|
assert SampleBatch.VF_PREDS in rollout or not use_critic, \
|
|
|
|
"use_critic=True but values not found"
|
|
|
|
assert use_critic or not use_gae, \
|
|
|
|
"Can't use gae without using a value function"
|
|
|
|
|
2017-12-14 01:08:23 -08:00
|
|
|
if use_gae:
|
2019-03-29 12:44:23 -07:00
|
|
|
vpred_t = np.concatenate(
|
|
|
|
[rollout[SampleBatch.VF_PREDS],
|
|
|
|
np.array([last_r])])
|
|
|
|
delta_t = (
|
2020-07-29 21:15:09 +02:00
|
|
|
rollout[SampleBatch.REWARDS] + gamma * vpred_t[1:] - vpred_t[:-1])
|
2020-01-21 08:06:50 +01:00
|
|
|
# This formula for the advantage comes from:
|
2017-12-14 01:08:23 -08:00
|
|
|
# "Generalized Advantage Estimation": https://arxiv.org/abs/1506.02438
|
2020-10-06 20:28:16 +02:00
|
|
|
rollout[Postprocessing.ADVANTAGES] = discount_cumsum(
|
|
|
|
delta_t, gamma * lambda_)
|
2020-07-29 21:15:09 +02:00
|
|
|
rollout[Postprocessing.VALUE_TARGETS] = (
|
|
|
|
rollout[Postprocessing.ADVANTAGES] +
|
2020-09-29 12:25:20 +02:00
|
|
|
rollout[SampleBatch.VF_PREDS]).astype(np.float32)
|
2017-12-14 01:08:23 -08:00
|
|
|
else:
|
2018-06-09 00:21:35 -07:00
|
|
|
rewards_plus_v = np.concatenate(
|
2019-03-29 12:44:23 -07:00
|
|
|
[rollout[SampleBatch.REWARDS],
|
|
|
|
np.array([last_r])])
|
2020-10-06 20:28:16 +02:00
|
|
|
discounted_returns = discount_cumsum(rewards_plus_v,
|
|
|
|
gamma)[:-1].astype(np.float32)
|
2020-02-01 08:25:45 +02:00
|
|
|
|
|
|
|
if use_critic:
|
2020-07-29 21:15:09 +02:00
|
|
|
rollout[Postprocessing.
|
|
|
|
ADVANTAGES] = discounted_returns - rollout[SampleBatch.
|
|
|
|
VF_PREDS]
|
|
|
|
rollout[Postprocessing.VALUE_TARGETS] = discounted_returns
|
2020-02-01 08:25:45 +02:00
|
|
|
else:
|
2020-07-29 21:15:09 +02:00
|
|
|
rollout[Postprocessing.ADVANTAGES] = discounted_returns
|
|
|
|
rollout[Postprocessing.VALUE_TARGETS] = np.zeros_like(
|
|
|
|
rollout[Postprocessing.ADVANTAGES])
|
2017-12-14 01:08:23 -08:00
|
|
|
|
2020-07-29 21:15:09 +02:00
|
|
|
rollout[Postprocessing.ADVANTAGES] = rollout[
|
2020-09-29 12:25:20 +02:00
|
|
|
Postprocessing.ADVANTAGES].astype(np.float32)
|
2017-12-24 12:25:13 -08:00
|
|
|
|
2020-07-29 21:15:09 +02:00
|
|
|
return rollout
|
2021-01-19 14:22:36 +01:00
|
|
|
|
|
|
|
|
|
|
|
def compute_gae_for_sample_batch(
|
|
|
|
policy: Policy,
|
|
|
|
sample_batch: SampleBatch,
|
|
|
|
other_agent_batches: Optional[Dict[AgentID, SampleBatch]] = None,
|
|
|
|
episode: Optional[MultiAgentEpisode] = None) -> SampleBatch:
|
|
|
|
"""Adds GAE (generalized advantage estimations) to a trajectory.
|
|
|
|
|
|
|
|
The trajectory contains only data from one episode and from one agent.
|
|
|
|
- If `config.batch_mode=truncate_episodes` (default), sample_batch may
|
|
|
|
contain a truncated (at-the-end) episode, in case the
|
|
|
|
`config.rollout_fragment_length` was reached by the sampler.
|
|
|
|
- If `config.batch_mode=complete_episodes`, sample_batch will contain
|
|
|
|
exactly one episode (no matter how long).
|
|
|
|
New columns can be added to sample_batch and existing ones may be altered.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
policy (Policy): The Policy used to generate the trajectory
|
|
|
|
(`sample_batch`)
|
|
|
|
sample_batch (SampleBatch): The SampleBatch to postprocess.
|
|
|
|
other_agent_batches (Optional[Dict[PolicyID, SampleBatch]]): Optional
|
|
|
|
dict of AgentIDs mapping to other agents' trajectory data (from the
|
|
|
|
same episode). NOTE: The other agents use the same policy.
|
|
|
|
episode (Optional[MultiAgentEpisode]): Optional multi-agent episode
|
|
|
|
object in which the agents operated.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
SampleBatch: The postprocessed, modified SampleBatch (or a new one).
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Trajectory is actually complete -> last r=0.0.
|
|
|
|
if sample_batch[SampleBatch.DONES][-1]:
|
|
|
|
last_r = 0.0
|
|
|
|
# Trajectory has been truncated -> last r=VF estimate of last obs.
|
|
|
|
else:
|
|
|
|
# Input dict is provided to us automatically via the Model's
|
|
|
|
# requirements. It's a single-timestep (last one in trajectory)
|
|
|
|
# input_dict.
|
|
|
|
if policy.config.get("_use_trajectory_view_api"):
|
|
|
|
# Create an input dict according to the Model's requirements.
|
|
|
|
input_dict = policy.model.get_input_dict(
|
|
|
|
sample_batch, index="last")
|
2021-03-17 08:18:15 +01:00
|
|
|
last_r = policy._value(**input_dict, seq_lens=input_dict.seq_lens)
|
2021-01-19 14:22:36 +01:00
|
|
|
# TODO: (sven) Remove once trajectory view API is all-algo default.
|
|
|
|
else:
|
|
|
|
next_state = []
|
|
|
|
for i in range(policy.num_state_tensors()):
|
|
|
|
next_state.append(sample_batch["state_out_{}".format(i)][-1])
|
|
|
|
last_r = policy._value(sample_batch[SampleBatch.NEXT_OBS][-1],
|
|
|
|
sample_batch[SampleBatch.ACTIONS][-1],
|
|
|
|
sample_batch[SampleBatch.REWARDS][-1],
|
|
|
|
*next_state)
|
|
|
|
|
|
|
|
# Adds the policy logits, VF preds, and advantages to the batch,
|
|
|
|
# using GAE ("generalized advantage estimation") or not.
|
|
|
|
batch = compute_advantages(
|
|
|
|
sample_batch,
|
|
|
|
last_r,
|
|
|
|
policy.config["gamma"],
|
|
|
|
policy.config["lambda"],
|
|
|
|
use_gae=policy.config["use_gae"],
|
|
|
|
use_critic=policy.config.get("use_critic", True))
|
|
|
|
|
|
|
|
return batch
|
|
|
|
|
|
|
|
|
|
|
|
def discount_cumsum(x: np.ndarray, gamma: float) -> float:
|
|
|
|
"""Calculates the discounted cumulative sum over a reward sequence `x`.
|
|
|
|
|
|
|
|
y[t] - discount*y[t+1] = x[t]
|
|
|
|
reversed(y)[t] - discount*reversed(y)[t-1] = reversed(x)[t]
|
|
|
|
|
|
|
|
Args:
|
|
|
|
gamma (float): The discount factor gamma.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
float: The discounted cumulative sum over the reward sequence `x`.
|
|
|
|
"""
|
|
|
|
return scipy.signal.lfilter([1], [1, float(-gamma)], x[::-1], axis=0)[::-1]
|