ray/rllib/offline/estimators/doubly_robust.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

149 lines
6 KiB
Python
Raw Normal View History

import logging
from typing import Dict, Any, Optional
from ray.rllib.policy import Policy
from ray.rllib.utils.annotations import DeveloperAPI, override
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.typing import SampleBatchType
import numpy as np
from ray.rllib.utils.numpy import convert_to_numpy
from ray.rllib.utils.policy import compute_log_likelihoods_from_input_dict
from ray.rllib.offline.estimators.off_policy_estimator import OffPolicyEstimator
from ray.rllib.offline.estimators.fqe_torch_model import FQETorchModel
torch, nn = try_import_torch()
logger = logging.getLogger()
@DeveloperAPI
class DoublyRobust(OffPolicyEstimator):
"""The Doubly Robust estimator.
Let s_t, a_t, and r_t be the state, action, and reward at timestep t.
This method trains a Q-model for the evaluation policy \pi_e on behavior
data generated by \pi_b. Currently, RLlib implements this using
Fitted-Q Evaluation (FQE). You can also implement your own model
and pass it in as `q_model_config = {"type": your_model_class, **your_kwargs}`.
For behavior policy \pi_b and evaluation policy \pi_e, define the
cumulative importance ratio at timestep t as:
p_t = \sum_{t'=0}^t (\pi_e(a_{t'} | s_{t'}) / \pi_b(a_{t'} | s_{t'})).
Consider an episode with length T. Let V_T = 0.
For all t in {0, T - 1}, use the following recursive update:
V_t^DR = (\sum_{a \in A} \pi_e(a | s_t) Q(s_t, a))
+ p_t * (r_t + \gamma * V_{t+1}^DR - Q(s_t, a_t))
This estimator computes the expected return for \pi_e for an episode as:
V^{\pi_e}(s_0) = V_0^DR
and returns the mean and standard deviation over episodes.
For more information refer to https://arxiv.org/pdf/1911.06854.pdf"""
@override(OffPolicyEstimator)
def __init__(
self,
policy: Policy,
gamma: float,
q_model_config: Optional[Dict] = None,
):
"""Initializes a Doubly Robust OPE Estimator.
Args:
policy: Policy to evaluate.
gamma: Discount factor of the environment.
q_model_config: Arguments to specify the Q-model. Must specify
a `type` key pointing to the Q-model class.
This Q-model is trained in the train() method and is used
to compute the state-value and Q-value estimates
for the DoublyRobust estimator.
It must implement `train`, `estimate_q`, and `estimate_v`.
TODO (Rohan138): Unify this with RLModule API.
"""
super().__init__(policy, gamma)
q_model_config = q_model_config or {}
model_cls = q_model_config.pop("type", FQETorchModel)
self.model = model_cls(
policy=policy,
gamma=gamma,
**q_model_config,
)
assert hasattr(
self.model, "estimate_v"
), "self.model must implement `estimate_v`!"
assert hasattr(
self.model, "estimate_q"
), "self.model must implement `estimate_q`!"
@override(OffPolicyEstimator)
def estimate(self, batch: SampleBatchType) -> Dict[str, Any]:
"""Compute off-policy estimates.
Args:
batch: The SampleBatch to run off-policy estimation on
Returns:
A dict consists of the following metrics:
- v_behavior: The discounted return averaged over episodes in the batch
- v_behavior_std: The standard deviation corresponding to v_behavior
- v_target: The estimated discounted return for `self.policy`,
averaged over episodes in the batch
- v_target_std: The standard deviation corresponding to v_target
- v_gain: v_target / max(v_behavior, 1e-8), averaged over episodes
- v_gain_std: The standard deviation corresponding to v_gain
"""
batch = self.convert_ma_batch_to_sample_batch(batch)
self.check_action_prob_in_batch(batch)
estimates = {"v_behavior": [], "v_target": [], "v_gain": []}
# Calculate doubly robust OPE estimates
for episode in batch.split_by_episode():
rewards, old_prob = episode["rewards"], episode["action_prob"]
log_likelihoods = compute_log_likelihoods_from_input_dict(
self.policy, episode
)
new_prob = np.exp(convert_to_numpy(log_likelihoods))
v_behavior = 0.0
v_target = 0.0
q_values = self.model.estimate_q(episode)
q_values = convert_to_numpy(q_values)
v_values = self.model.estimate_v(episode)
v_values = convert_to_numpy(v_values)
assert q_values.shape == v_values.shape == (episode.count,)
for t in reversed(range(episode.count)):
v_behavior = rewards[t] + self.gamma * v_behavior
v_target = v_values[t] + (new_prob[t] / old_prob[t]) * (
rewards[t] + self.gamma * v_target - q_values[t]
)
v_target = v_target.item()
estimates["v_behavior"].append(v_behavior)
estimates["v_target"].append(v_target)
estimates["v_gain"].append(v_target / max(v_behavior, 1e-8))
estimates["v_behavior_std"] = np.std(estimates["v_behavior"])
estimates["v_behavior"] = np.mean(estimates["v_behavior"])
estimates["v_target_std"] = np.std(estimates["v_target"])
estimates["v_target"] = np.mean(estimates["v_target"])
estimates["v_gain_std"] = np.std(estimates["v_gain"])
estimates["v_gain"] = np.mean(estimates["v_gain"])
return estimates
@override(OffPolicyEstimator)
def train(self, batch: SampleBatchType) -> Dict[str, Any]:
"""Trains self.model on the given batch.
Args:
batch: A SampleBatch or MultiAgentbatch to train on
Returns:
A dict with key "loss" and value as the mean training loss.
"""
batch = self.convert_ma_batch_to_sample_batch(batch)
losses = self.model.train(batch)
return {"loss": np.mean(losses)}